
CMPUT 605: Theoretical Foundations of Reinforcement
Learning, Winter 2023

Homework #0

Instructions: You need to submit a single PDF file, named p01 <name>.pdf where <name> is your
name. The PDF file should include your typed up solutions (we strongly encourage to use pdfLATEX). Write
your name in the title of your PDF file. We provide a LATEXtemplate that you are encouraged to use. To
submit your PDF file you should send the PDF file via private message to Vlad Tkachuk on Slack before the
deadline.

Collaboration and sources Work on your own. You can consult the problems with your classmates,
use books or web, papers, etc. Also, the write-up must be your own and you must acknowledge all the
sources (names of people you worked with, books, webpages etc., including class notes.) Failure to do so
will be considered cheating. Identical or similar write-ups will be considered cheating as well. Students are
expected to understand and explain all the steps of their proofs.

Scheduling Start early: It takes time to solve the problems, as well as to write down the solutions. Most
problems should have a short solution (and you can refer to results we have learned about to shorten your
solution). Don’t repeat calculations that we did in the class unnecessarily.

Deadline: January 15 at 11:55 pm

1 In search of ...

Consider the following simple learning problem: Fix δ > 0 and an integer k > 0. Here, k will be the number
of actions available. Each action i ∈ [k] := {1, . . . , k} is assigned a value, say, µi, which is a real number.
The learner does not know these values. The problem of the learner is to find an action that is δ close to the
best action out of k actions (higher values are better). The learner can try any action in any order and can
even randomize when choosing the next action. When choosing an action, the learner receives in response
the value of the action (without noise!). When choosing an action, the learner can take into account all the
past observations and choices: It has no limit of what it can remember, or on the precision of its memory.
At one point, the learner needs to stop and return an action.

A problem instance that the learner interacts with is fully characterized by µ = (µ1, . . . , µk) ∈ Rk,
the k values assigned to the actions. The learner is called δ-sound for a set of instances H ⊂ Rk if no
matter the problem instance taken from H, when the learner interacts with the aforementioned way with
the chosen problem instance, the learner always stops and returns an action that is strictly less than δ away
from the optimal action on that instance. If the instance was µ ∈ Rk, the learner chose A ∈ [k], with
probability one, it has to hold that µA > maxi∈[k] µi − δ (note the strict inequality). For a learner A, let
q(A, µ) be the expected value of the number of rounds that the learner spends with interacting with problem
instance µ (we need the expected value, because learners may randomize). By slightly abusing notation, let
q(A,H) = maxµ∈H q(A, µ) be the expected number of rounds that the learner A will spend on the instance
in H which makes it the “slowest”.

Let S(H, δ) be the set of δ-sound learners for H. Further, let B = {e1, . . . , ek} ⊂ Rk where ei is the ith
standard basis vector: eij = 0 if j 6= i and eii = 1.

Question 1 Describe a deterministic learner A ∈ S(B, 1) such that the learner stops on any instance in B
after at most k − 1 queries: q(A,B) ≤ k − 1.

Total: 5 points
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Question 2 Formally prove that for the learner A you described A ∈ S(B, 1) holds.

Total: 5 points

Question 3 Formally prove that for the learner A you described q(A,B) ≤ k − 1 holds.

Total: 5 points

Question 4 Show that any deterministic learner A ∈ S(B, 1) needs at least k− 1 queries in the worst case
for instances in B.

Total: 10 points

Question 5 Describe a learner A ∈ S(B, 1) (deterministic or not) such that the learner stops on any
instance in B after at most (k+1)/2−1/k queries on expectation: q(A,B) ≤ (k+1)/2−1/k. Formally prove
that the learner is indeed sound and it indeed stops after at most (k+ 1)/2− 1/k queries on expectation, on
every problem instance in B.

Total: 15 points

Question 6 Show that any learner A ∈ S(B, 1) needs at least (k + 1)/2 − 1/k queries on expectation in
the worst case for instances in B. That is, prove that for any A ∈ S(B, 1), q(A,B) ≥ (k + 1)/2− 1/k.

Hint: Yao’s lemma states “that the expected cost of a randomized algorithm on the worst-case input is
no better than the expected cost for a worst-case probability distribution on the inputs of the deterministic
algorithm that performs best against that distribution.” (source: wikipedia). Use this lemma.

Total: 15 points

Question 7 (for fun) It appears that as far as the expected number of rounds is considered, randomized
learners can do better than deterministic learners. Is this real? Would you implement the randomized
learner? Why or why not?

Total: 0 points

2 Basic probability questions

Assume that you are given a randomized algorithm B that returns the unique correct answer on any problem
it is fed with (e.g., computing a shortest path) with probability at least 2/3. Fix δ > 0.

Question 8 Design an algorithm that returns the correct answer with probability at least 1 − δ. The
algorithm may use B. Describe how your algorithm works (pseudocode preferred).

Total: 5 points
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Question 9 Bound the expected runtime of your algorithm as a function of the expected runtime of B. In
particular, if the expected runtime of B on input x is r(B, x), then show that the expected runtime of your
algorithm on input x is at most d72 ln(1/δ)e r(B, x). If needed modify your algorithm (in which case modify
your answer to the previous question).
Hint: Use the “Chernoff lower tail bound” for independent Bernoulli variables. This states the following:
Let S be the sum of n independent Bernoulli random variables. Let µ = E[S] be the expected value of S.
Then, for any 0 ≤ δ ≤ 1, P(S ≤ (1− δ)µ) ≤ exp(−µδ2/3).

Total: 5 points

Question 10 For the same setting as in Question 8, now consider the case when B itself is correct with
probability at least 1− δ. Consider the case when B is run on s different inputs. Show that for any s ≤ 1/δ,
the probability that B is correct on all these inputs is at least 1− sδ.

Total: 5 points

3 Basic calculus and such

Question 11 For x ∈ Rd and p ≥ 1 let ‖x‖p = (
∑d
i=1 |xi|p)1/p. For p = ∞, let ‖x‖∞ = maxi |xi|. Show

that for any x, 1 ≤ p ≤ q ≤ ∞, ‖x‖p ≥ ‖x‖q.

Total: 5 points

Question 12 Let 1 ≤ p ≤ ∞. Show that for any c ∈ R, x, y ∈ Rd, the following hold:

1. ‖x‖p ≥ 0 and if ‖x‖p = 0 then x = 0;

5 points

2. ‖cx‖p = |c| ‖x‖p;

5 points

3. ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

5 points

(That is, ‖ · ‖p is a norm on Rd.)

Total: 15 points

Question 13 Let ‖ · ‖ be any norm on the vector-space of d× d matrices (that is, ‖ · ‖ : Rd×d → R satisfies
the properties of a norm when we treat Rd×d as a d2-dimensional vector space over the reals). Further,
assume that ‖ · ‖ is submultiplicative: for any A,B ∈ Rd×d, ‖AB‖ ≤ ‖A‖‖B‖. Let I be the d × d identity
matrix, A ∈ Rd×d arbitrary. Show that I −A is nonsingular when

∑∞
k=0 ‖A‖k <∞.

Hint: Perhaps the inverse of I −A is equal to
∑
k≥0A

k? But is this infinite sum even well-defined?

Total: 15 points
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Question 14 Let now ‖ · ‖ be a norm on Rd. Call s : Rd×d → R the “norm induced by ‖ · ‖” when for any
A ∈ Rd×d, s(A) = supx∈Rd,‖x‖=1 ‖Ax‖. Show that s is a submultiplicative norm on Rd×d, i.e., it satisfies the
premise of the previous question.

Total: 5 points

Question 15 Calculate a closed form expression for s(A) with A ∈ Rd×d and s the norm induced on Rd×d
by the vector-space norm ‖ · ‖∞.

Total: 5 points

Question 16 Let T : U → V be a map from a normed vector space U over the reals to another normed
vector space V over the reals. Possibly U 6= V , so the norms will also be different, but to reduce clutter, we
just use ‖ · ‖ to denote the norms on all the vector spaces as from the context it will always be clear which
norm we are concerned with. Fix L ≥ 0. The map T is called L-Lipschitz if ‖T (u)− T (u′)‖ ≤ L‖u− u′‖.

1. Why can we write T (u)− T (u′)? What set does the result of this operation belong to? Why?

2 points

2. Let T : U → V be L-Lipschitz, S : V → W be M -Lipschitz (W is also a normed vector space and
M ≥ 0). Prove that S ◦ T is LM -Lipschitz. Here, S ◦ T is the composition of T and S. Thus,
S ◦ T : U →W and in particular (S ◦ T )(u) = S(T (u)).

8 points

Total: 10 points

Total for all questions: 125
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