
CMPUT 605: Theoretical Foundations of Reinforcement
Learning, Winter 2023

Homework #4

Instructions

Submissions You need to submit a single PDF file, named p04 <name>.pdf where <name> is your name.
The PDF file should include your typed up solutions (we strongly encourage to use pdfLATEX). Write your
name in the title of your PDF file. We provide a LATEXtemplate that you are encouraged to use. To submit
your PDF file you should send the PDF file via private message to Vlad Tkachuk on Slack before the deadline.

Collaboration and sources Work on your own. You can consult the problems with your classmates,
use books or web, papers, etc. Also, the write-up must be your own and you must acknowledge all the
sources (names of people you worked with, books, webpages etc., including class notes.) Failure to do so
will be considered cheating. Identical or similar write-ups will be considered cheating as well. Students are
expected to understand and explain all the steps of their proofs.

Scheduling Start early: It takes time to solve the problems, as well as to write down the solutions. Most
problems should have a short solution (and you can refer to results we have learned about to shorten your
solution). Don’t repeat calculations that we did in the class unnecessarily.

Deadline: March 26 at 11:55 pm

Large action set query lower bound

We recall a few definitions and results from Lecture 9. For a featurized MDP (M,φ), let

ε∗(M,Φ) := sup
π memoryless

inf
θ∈Rd

‖Φθ − qπ‖∞ . (1)

Definition 1. An online planner is (δ, ε)-sound if for any finite discounted MDP M = (S,A, P, r, γ) and
feature-map ϕ : S × A → Rd such that ε∗(M,Φ) ≤ ε, when interacting with (M,ϕ), the planner induces a
δ-suboptimal policy of M .

The following was proven in the said lecture:

Theorem 1 (Query lower bound: large action sets). For any ε > 0, 0 < δ ≤ 1/2, positive integer d
and for any (δ, ε)-sound online planner P there exists a featurized-MDP (M,ϕ) with rewards in [0, 1] with
ε∗(M,Φ) ≤ ε such that when interacting with a simulator of (M,ϕ), the expected number of queries used by
P is at least Ω(f(d, ε, δ)) where

f(d, ε, δ) = exp

 1

32

(√
dε

δ

)2
 .

Question 1. The lecture notes provide a proof sketch for this theorem. Formally prove this theorem,
explicitly explain each step of your proof.

Total: 20 points
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https://rltheory.github.io/lecture-notes/planning-in-mdps/lec9/


Fixed-horizon fundamental theorem

The same lecture stated the fundamental theorem for fixed-horizon problems, which we copy here for con-
venience. For the definitions of the quantities used in the theorem, see the lecture notes.

Theorem 2 (Fixed-horizon fundamental theorem). We have v∗0 ≡ 0 and for any h ≥ 0, v∗h+1 = Tv∗h.
Furthermore, for any π∗0 , . . . , π

∗
h, . . . such that for i ≥ 0, π∗i is greedy with respect to v∗i , for any h > 0 it

holds that π = (π∗h−1, . . . , π
∗
0 , . . . ) (i.e., the policy which in step 0 uses π∗h−1, in step 1 uses π∗h−2, . . . , in

step (h− 1) uses π∗0 , after which it continues arbitrarily) is h-step optimal:

vπh = v∗h .

In the lecture notes we did not give a proof.

Question 2. Prove Theorem 2. Hint: Use induction and mimic the previous proofs.

Total: 50 points

Statisticians also have limits

Let X be a subset of a Euclidean space equipped with the usual Borel σ-algebra, P ⊂ M1(X ) a set of
probability distributions over X . Let f : P → R be a fixed function. We consider statistical estimation
problems where a random “data” X ∈ X is observed from an unknown P ∈ P and the job of the statistician
is to produce an estimate of f(P ).

That is, the statistician needs to design an estimator; for simplicity we assume that the estimators are
not randomizing (an extension to randomizing estimators is trivial). A non-randomizing estimator maps the
data to a real; thus, any such estimator is a map g : X → R. We assume that g is measurable so that we
can talk about the probability of errors.

In particular, for δ ∈ [0, 1] and ε > 0, we say that g is (δ, ε)-sound for the problem specified by (P, f) if
for any P ∈ P,

P (|g(X)− f(P )| > ε) ≤ δ . (2)

Here, X : X → X is treated as the identity map, as usual: X(x) = x, x ∈ X . Thus, the above probability is
the probability assigned by P to the set

{x ∈ X : |g(x)− f(P )| > ε}

and condition (2) has the equivalent form that for any P ∈ P,

P ({x ∈ X : |g(x)− f(P )| > ε}) ≤ δ .

It is just shorter and more elegant to write Eq. (2), hence, we will stick to this usual form.
For two probability measures, P,Q, over the same measurable space (Ω,F), we define their relative

entropy by

D(P,Q) =

{∫
log dP

dQ (ω) dP (ω) , if P � Q

+∞ , otherwise .

The relative entropy is also known as the Kullback-Leibler divergence between P and Q (see Chapter 14 in
the bandit book for an explanation of its origin and some examples).

The following result, which is Theorem 14.12 in that book, will be useful:
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https://tor-lattimore.com/downloads/book/book.pdf


Theorem 3 (Bretagnolle–Huber inequality). Let P and Q be probability measures on the same measurable
space (Ω,F), and let A ∈ F be an arbitrary event. Then,

P (A) +Q(Ac) ≥ 1

2
exp (−D(P,Q)) , (3)

where Ac = Ω \A is the complement of A.

Question 3. Show that if there is an (δ, ε)-sound estimator for (P, f) then

log

(
1

4δ

)
≤ inf{D(P0, P1) : P0, P1 ∈ P s.t. |f(P0)− f(P1)| > 2ε} .

In words, distributions whose f -values are separated by 2ε cannot be too close to each other if a (δ, ε)-
sound estimator exist. This should be quite intuitive.

Total: 20 points

In what follows, we will deal with Bernoulli random variables. The relative entropy between Bernoulli
distributions has special properties which we will find useful. The next problem asks you to prove some of
these properties.

Let Ber(p) denote the Bernoulli distribution with parameter p ∈ [0, 1]. As it is well known (and not hard
to see from the definition),

D(Ber(p),Ber(q)) = d(p, q)

where d(p, q) is the so-called binary relative entropy function, which is defined as

d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)) .

Question 4. Show that for p, q ∈ (0, 1), defining p∗ to be p or q depending on which is further away from
1/2,

d(p, q) ≤ (p− q)2

2p∗(1− p∗)
. (4)

Hint: Notice that d(p, q) = DR((p, 1− p), (q, 1− q)), where DR is Bregman divergence with respect to our
old friend, the unnormalized negentropy R over [0,∞)2. Then use Theorem 26.12 from the bandit book.

Total: 20 points

Now, for n > 0 let Ber⊗n(p) denote the n-fold product of Ber(p) with itself, so that if X ∼ Ber⊗n(p)
then X = (X1, . . . , Xn) where Xi ∼ Ber(p) and (X1, . . . , Xn) is an independent sequence.

Take X = {0, 1}n and Pn = {Ber⊗n(p) : p ∈ [0, 1]}. Let f : Pn → [0, 1] be defined by f(Ber⊗n(p)) = p.
The problem specified by (Pn, f) is the problem of estimating the parameter of a Bernoulli distribution given
n independent observations from the said, unknown distribution.

Question 5. Show that for the Bernoulli estimation problem described above, for δ ∈ [0, 1] and 0 ≤ ε2 <

1/32 fixed, there is no (δ, ε)-sound estimator of the common mean, unless n ≥ log(1/(4δ))
16ε2 .

Hint: Use that D(P⊗n, Q⊗n) = nD(P,Q) and the statements from the previous two problems.

Total: 20 points
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Now consider the problem when the definition of f is changed to

fγ(Ber⊗n(p)) =
1

1− γp
, (5)

where 0 < γ < 1.

Question 6. Show that for the Bernoulli estimation problem described above with f = fγ as in Eq. (5),
with some constants γ0 > 0 and c0, c1 > 0, for δ ∈ [0, 1], ε ≤ c0/(1− γ), γ ≥ γ0, the necessary condition for

the existence of (δ, ε)-sound estimator for (Pn, fγ) is that n ≥ c1 log(1/(4δ))
(1−γ)3ε2 .

Hint: Use the same strategy as in the solution of the previous exercise.

Total: 40 points

Total for all questions: 170. Of this, 70 are bonus marks. Your assignment will be marked out of 100.
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