
CMPUT 605: Theoretical Foundations of Reinforcement
Learning, Winter 2023

Midterm

Instructions

Submissions You need to submit a single PDF file, named midterm <name>.pdf where <name> is your
name. The PDF file should include your typed up solutions (we strongly encourage to use pdfLATEX). Write
your name in the title of your PDF file. We provide a LATEXtemplate that you are encouraged to use. To
submit your PDF file you should send the PDF file via private message to Vlad Tkachuk on Slack before the
deadline.
Collaboration and sources Work on your own. No consultation, etc. Students are expected to understand
and explain all the steps of their proofs.
Scheduling Start early: It takes time to solve the problems, as well as to write down the solutions. Most
problems should have a short solution (and you can refer to results we have learned about to shorten your
solution). Don’t repeat calculations that we did in the class unnecessarily.

Deadline: February 26 at 11:55 pm

Undiscounted infinite horizon problems

Let M = (S,A, P, r) be a finite MDP as usual, but this time consider the infinite horizon undiscounted total
reward criterion. In this setting, the value of policy π (memoryless or not) is

vπ(s) = Eπs

[ ∞∑
t=0

rAt(St)

]
.

To guarantee that this value exist we make the following assumption on the MDP M :

Assumption 1 (All policies proper). Assume that the MDP M has a state s? such that the following hold:

1. For all actions a ∈ A, Pa(s?, s?) = 1 (and thus, Pa(s?, s′) = 0 for any s′ 6= s? state of the MDP);

2. For all actions a ∈ A, ra(s?) = 0;

3. The rewards are all nonnegative;

4. For any policy π of the MDP (memoryless or not), and for any s ∈ S,
∑
t≥0 Pπs (St 6= s?) <∞.

In this section we assume that Assumption 1 holds even if this is not explicitly mentioned.
Note: You may find it useful to resuse results from previous assignments and the lecture notes. If you
believe a solution to any of the questions below is very similar to a previous assignment solution or proof in
the lecture notes, you do not need to rewrite the entire solution. It is sufficient to indicate only what would
need to be changed for the solution to hold in the setting defined above (i.e. under Assumption 1). When
referring to an assignment solution, please refer to the solution PDF shared with you after the assignment
deadline (named assignmentX soln.pdf where X is the assignment number), not your personal solutions to
the assignments.

Question 1. Show that the value of any policy π can indeed be “well-defined” in the following sense: Let
(Ω,F) be the measurable space that holds the random variables (St, At)t≥0.
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1. If we take R =
∑∞
t=0 rAt(St), this is well-defined as an extended real random variable from the mea-

surable space (Ω,F) to (R̄,B(R̄)) where R̄ = R ∪ {−∞,+∞} is the set of extended reals and B(R̄) is
the “natural” Borel σ-algebra over R̄ defined using B(R̄) = σ({[−∞, x] : x ∈ R̄}) (i.e., the smallest
σ-algebra generated by the set system in the argument of σ).

5 points

2. For any policy π and state s ∈ S, under Pπs , the expectation of R exists and is finite.

20 points

Hint: For Part 1, recall the closure properties of the collection of extended real random variables (e.r.r.v.).
Start your argument with showing that rAt(St) is a random variable and build up things from there. For
Part 2, recall that the expected value of a nonnegative e.r.r.v is equal to the limit of expected values assigned
to simple functions below it provided that the limit of these simple functions converges to the e.r.r.v. For
Part 2, see Prop 2.3.2 and for Part 1 see Prop 2.1.5 in (for example) this book here.1

Total: 25 points

The last part of the previous problem allows us to define the value of π in state s using the usual formula

vπ(s) = Eπs [R]

and note that regardless of π and s, these values are always finite.
For a memoryless policy π and s, s′ 6= s?, define Pπ(s, s′) =

∑
a∈A π(a|s)Pa(s, s′), i.e., the usual way. We

can also view Pπ, as usual, an (S− 1)× (S− 1) matrix by identifying S with {1, . . . ,S}, s? = S.

Question 2 (Transition matrices). Show that for any s, s′ ∈ S, s, s′ 6= s?, and t ≥ 1, (P tπ)s,s′ = Pπs (St =
s′).

Total: 10 points

Question 3. Prove that for any memoryless policy π, defining rπ(s) =
∑
a π(a|s)ra(s), as usual, we have

vπ =
∑
t≥0 P

t
πrπ, where when viewed as vectors, vπ and rπ are restricted to s 6= s? (i.e., they are (S − 1)-

dimensional).
Hint: You may want to reuse the result of the previous exercise.

Total: 10 points

Question 4 (Policy evaluation fixed-point equation). Show that for s 6= s?, vπ satisfies

vπ(s) = rπ(s) +
∑
s′ 6=s?

Pπ(s, s′)vπ(s′) .

Total: 2 points

1Krishna B. Athreya and Soumendra N. Lahiri. Measure Theory and Probability Theory. Springer, 2006.
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Define now the w(s) as the total expected reward incurred under π when it is started from s and in each
time step the reward incurred is one until s? is reached (that is, ra(s) is replaced by 1 for s 6= s?, while the
zero rewards are kept at s?). By our previous result, w is well-defined. Furthermore,

w(s) ≥ 1 , s 6= s?

since for s 6= s?, in the zeroth period, a reward of one is incurred and in all subsequent periods the rewards
incurred are nonnegative.

Introduce now the weighted norm, ‖ · ‖w: For x ∈ RS−1,

‖x‖w = max
s∈[S−1]

|xs|
w(s)

.

When the dependence on π is important, we will use wπ.

Question 5 (Contractions). Show that Pπ is a contraction under ‖ · ‖w, that is, there exists 0 ≤ ρ < 1 such
that for any x, y ∈ RS−1,

‖Pπx− Pπy‖w ≤ ρ‖x− y‖w .

Total: 15 points

We can define occupancy measures as before: For s 6= s?, policy π and initial state distribution µ defined
over s? 6∈ S ′ := {1, . . . ,S− 1},

νπµ (s, a) =

∞∑
t=0

Pπµ(St = s,At = a).

Clearly, this is well-defined under our standing assumption (by Question 1). Noting that rewards from s?

are all zero, we have

vπ(µ) = 〈νπµ , r〉 .

Question 6. Show that for any policy π and distribution µ ∈M1(S ′) there is a memoryless policy π′ such
that νπµ = νπ

′

µ .

Total: 10 points

Define v∗(s) = supπ v
π(s) and define T : RS−1 → RS−1 by (Tv)(s) = maxa ra(s) + 〈Pa(s), v〉, s 6= s?. For

a memoryless policy, we also let Tπv = rπ + Pπv (using vector notation). Greediness is defined as usual: π
is greedy w.r.t. v ∈ RS−1, if Tπv = Tv.

Question 7 (The Fundamental Theorem for Undiscounted Infinite-Horizon MDPs). Show that the funda-
mental theorem still holds:

1. The optimal value function v∗ is well-defined (i.e., finite);

20 points

2. Any policy that is greedy with respect to v∗ is optimal: vπ = v∗;
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3. It holds that v∗ = Tv∗.

10 points

Total: 30 points

Question 8. Imagine that Assumption 1 is changed such that all immediate rewards are nonpositive (at s?

the rewards are still zero). What do you need to change in your answer to the previous questions? Just give
a short summary of the changes.

Total: 3 points

Question 9. Imagine that Assumption 1 is changed such that there is no sign restriction on the rewards,
they can be positive, or negative. Something will go wrong with the claims made in Question 1. Explain
what.

Total: 3 points

Approximate Policy Iteration

Question 10. Prove the Theorem(Approximate Policy Iteration) from lecture notes 8. Assume that the
rewards lie in the [0, 1] interval. Let (πk)k≥0, (εk)k be such that

Tvπk = Tπk+1
vπk + εk

holds for all k ≥ 0 Then, for any k ≥ 1,

‖v∗ − vπk‖∞ ≤
γk

1− γ
+

1

(1− γ)2
max

0≤s≤k−1
‖εs‖∞.

Hint: You should make use of Lemma(Geometric progress lemma with approximate policy improvement)
from lecture notes 8.

Total: 10 points

Policy Gradients and Stationary Points

Question 11. In this question, we will show that there are no suboptimal stationary points in policy search,
as long as there are no suboptimal stationary points on the corresponding policy improvement objective. For
each θ ∈ Rd, we let πθ : S →M1(A) be a memoryless policy and Π = {πθ : θ ∈ Rd} the set of parametrized
policies. As usual, π∗ denotes the optimal policy, i.e. vπ

∗
= v∗. Note that we do not assume explicitly that

π∗ ∈ Π. For an initial state distribution µ ∈M1(S), the return is

J(π) = µ>vπ (1)

We assume that θ 7→ J(πθ) is differentiable. Recall that θ0 ∈ Rd is a stationary point of J(πθ) if

d

dx
J(πx)|x=θ0 = 0 ∈ Rd . (2)

Let θ0 ∈ Rd and assume that the following conditions hold:
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i) The policy gradient theorem holds, i.e. for all θ ∈ Rd, d
dxJ(πx)|x=θ = ν̃πθµ

d
dxMπxq

πθ |x=θ, where ν̃πθµ is
the discounted state occupancy measure for policy πθ and initial state distribution µ.

ii) The policy class is closed under policy iteration, i.e. for all θ ∈ Rd, maxπ∈Π ν̃
πθ
µ Mπq

πθ = maxπ∈ML ν̃
πθ
µ Mπq

πθ ,
where ML is the set of memoryless policies.

iii) For each θ ∈ Rd, the map x 7→ ν̃πθµ Mπxq
πθ has no suboptimal stationary points.

iv) The occupancy measure of π∗ is absolutely continuous w.r.t. the occupancy measure of πθ0 : ν̃π
∗

µ � ν̃
πθ0
µ

(the definition of absolutely continuous is that ν̃
πθ0
µ (s) = 0 =⇒ νπ

∗

µ (s) = 0).

In the following, we show that θ0 is a stationary point of J(πθ) if and only if J(πθ) = J(π∗).

1. Show that J(πθ0) = J(π∗) implies that θ0 is a stationary point.

5 points

2. For the other direction, assume that θ0 is a stationary point of J(πθ). Use assumptions i)-iii) to show
that ν̃

πθ0
µ vπθ0 = ν̃

πθ0
µ Tvπθ0 (i.e. θ0 satisfies an “average” Bellman optimality equation). Conclude the

proof using the performance difference lemma and assumption iv).

25 points

Total: 30 points

Total for all questions: 148. Of this, 28 are bonus marks (i.e., 120 marks worth 100% on this problem
set).
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