Lecture 10
Planning under g™ realizability



The planner will be given a feature map ¢, for every stage 0 < h < H — 1 such that @ : ﬂ x A — R

The realizability assumption means that ¢ L/l ()
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Theorem (worst-case query-cost is exponential under g* -realizability): For any d, H large enough and
any online planner P that is(9/128-sound for the H-horizon planning problem, there exists a triplet

(M, s, ¢) where M is a finite MDP with random rewards taking values in and deterministic
transitions, s is a state of this MDP and ¢ is a d-dimensional feature-map such that (1) holds for the
optimal action-value function ¢* = (g7 )o<r<m—1 and the expected number of queries g that P uses when

interconnected with (M, s, ¢) satisfies
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Design principles:
- signal-to-noise ratio of almost all actions must be low
- this must hold for all stages that are easy to reach
(eg initial state, random last-stage state, etc.)
- =>random last-stage state@must be tiny

For simplicity there is only ever 1 reward during an episode so q*=this reward



[ i+
- Take ~exp(d)\many JL vectors such that |<a,b>| <= 1/4 and <a,a>=1

- Each JL vector corresponds to an action

- Iways optimal

- if a* played, r(s,a*)=q*(s,a"), transition to exit lane

- if a* never played, reward only in the last stage: r(s\,a)zq*(s,a)
- but this is ~exp(-H) tiny!

To “solve” MDP (get a delta-sound planner for some const delta):

Q- either find @ (needle-in-a-haystack, takes ~@stes
- or learn from final-stage rewards (low SNR, takes #exp(Hj steps)
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To get final-stage reward that small,
iIntroduce penalty for every suboptimal action.

Ifa_1,a_2, ..., a_n were previous actions to get to s:
L & o L4
=q(s,a)=penalty(a_1, a_2)*penalty(a_2, a_3)"..."penalty(a_n, a)*penalty(a, a”)

s phi(s,a)=[1, JL(a)(Z penalty(a_1, a_2)* penalty(a 2,a_3)".. penaltya n, a%@—ﬂ
< theta*™=[1, JL(a")]
N/

where L\/z@ CLWOM)(O\ el } " JL[RJ

- penalty(x, y) = (<JL(x), JL(y)> + 1 /2
- ie. remap JL vectors’ inner products to@(easy linear OP)

- each penalty factor above is unless a_i=a* because disallow repeated action
- => * exponentially decreases

- observe penalty(a®, a*)=1

- => pulling a* in next action always gives q*(s,a) reward (consistency)







Extension 1: do we need so many actions?

A: NO! https://arxiv.org/abs/2110.02195
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- Only d actions
- d in exp(d) lower bound replaced by p:=d”*1/4:
- because g* will now be a 4th-order polynomial in p
- ie. linearin d
- Main idea:
- Replace JL vectors with corners of a p-dimensional hypercube
- WHP inner products of randomly picked corners small
- Split the selection of a corner (previously, the action) into p gﬁg;;,ds
- Intricate rules to ensure:
- close corners cannot be selected in consecutive rounds
@* greedily moves the corner selection close to theta”



Extension 2: online planning vs online RL
Is it harder if you cannot plan?

A: YES! Exponentially so, at least when you also assume suboptimality gap.
Planning can be solved in poly() queries with this assumption (how?)

ssumption 2 (Minimum Gap). For any state s € S, a € A, the suboptimality gap is defined as Ay (s,a) =
i (s) — Qr (s,a). We assume that mingc (g ses,ac4 {AR(S,a) : Ax(s,a) > 0} ZApin
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An Exponential Lower Bound for Linearly-Realizable MDPs

with Constant Suboptimality Gap
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Same effect as downscaling with penalty factor:
- transition to exit lane with probability corresponding to penalty

Easy with planning: keep
replaying until red transition

Hard with online RL: even though
last-stage rewards remain large,
WHP cannot get there
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