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PERFORMANCE GUARANTEE
For any MDP feature-map pair  and any ,

LSPI-G can produce a policy  such that its suboptimality gap  satisfies
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We saw  is inevitable

but

is  also inevitable?
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YES 😭



Theorem (LSPI error amplification lower bound)

For every ,

there is a featurized MDP , its policy , and a distribution  over  s.t.

LSPI with access to true Q-functions produces a sequence of policies  satisfying

where  is a universal constant independent of other variables.
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STATE-AGGREGATION
Suppose that , , and  has a partition .

State-aggregation is the following feature map:

where  and  is the remainder of .

S = {1, … ,S} A = {1, … ,A} S {S  }  i i=1
d

ϕ  (s, a) =j I{s ∈ S  }I{rem(j −ceil(j/A) 1,A) + 1 = a},

ϕ(s, a) ∈ RAd rem(x, y) x/y



import numpy as np 

A = 3; d = 2 

phi = np.arange(A * d) + 1 # [ 1, ..., 6]) 

ceil = np.ceil(phi / A).astype(np.int) # [1, 1, 1, 2, 2, 2] 
rem_1 = np.remainder(phi - 1, A) + 1 # [1, 2, 3, 1, 2, 3] 

Is = ceil == 2 # [0, 0, 0, 1, 1, 1] 
Ia = rem_1 == 1 # [1, 0, 0, 1, 0, 0] 
Is * Ia # [0, 0, 0, 1, 0, 0]
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OK, so  is real.

Can we avoid it with a different algorithm?
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Yes! Politex can!



PSEUDO-ALGORITHM OF POLITEX
1. Given the feature map , find  and .
2. Let  and 
3. For  do
4.  Let  be a Boltzmann policy induced by 
5.  For each  do
6.  Get rollouts with  for  steps from 

7.  Compute return estimate 

8.  

9.  Let  and 
10. Return all policies 

ϕ C ρ

θ  =−1 0   =q̄−1   =q̂−1 ΠΦθ  −1

k = 0, 1, 2, … ,K − 1
π  k   q̄k−1

z ∈ C

π  k H z

 (z)R̂m

θ  =k G   ϱ(z)  (z)ϕ(z)ϱ
−1 ∑z∼ρ R̂m

  =q̂k ΠΦθ  k   =q̄k   +q̄k−1   q̂k
(π  )  k k=0

K−1



SUBTLE BUT IMPORTANT CHANGE

where

This seemingly simple modification has an interesting connection to online algorithms.
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WHY POLITEX PERFORMS BETTER?
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NOTES



STATIONARY POINTS OF A POLICY SEARCH OBJECTIVE
Let . A stationary point of  with respect to some set of memoryless policies 

 is any  such that

If  are state-aggregation features, any stationary point  satisfies

where .
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LAST-ITERATE CONVERGENCE OF POLITEX?

Key: A Boltzmann policy is entropy regularized greedy policy!
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Then, we can use the almost same argument we had before.
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Recall that , so
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STATE AGGREGATION AND EXTRAPOLATION
FRIENDLINESS

Recall LSPI-G's performance upper-bound.

What's the source of this ?
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BOUNDING EXTRAPOLATION ERROR
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BETTER DESIGN FOR STATE-AGGREGATION
Pick up one element  from each  and let

Then, ,

and  iff  and .
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So, we don't have  anymore!
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LSVI-G
For least-squares value iteration with -optimal design (LSVI-G), a result performance

guarantee holds.

Concretely, it can produce a policy  such that the suboptimality gap  of  satisfies

where
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LINEAR MDPS
An MDP-feature-map pair  is said to be approximately linear if  s.t.

If these hold, for any  and ,
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That's all! Any question?


