FROM API TO POLITEX

CMPUT653: THEORETICAL FOUNDATIONS OF RL

TABLE OF CONTENTS

- Quick Recap of LSPI-G
 - Pseudo-algorithm
 - Suboptimality gap of $\frac{2(1+\sqrt{d})}{(1-\gamma)^2}\varepsilon$
- Is this suboptimality gap real?
 - ⇒ Unfortunately, yes [™]
- Can we avoid it with any other algorithm?
 - \implies Yes, Politex can!
- Some notes

PSEUDO-ALGORITHM OF LSPI-G

- 1. Given the feature map ϕ , find \mathcal{C} and ρ . 2. Let $\theta_{-1} = 0$
- 3. For $k=0,1,2,\ldots,K-1$ do
- 4. Let π_k be a greedy policy wrt $\Phi \theta_{k-1}$

5. For each
$$z\in \mathcal{C}$$
 do

- Get rollouts with π_k for H steps from z6.
- Compute return estimate $\hat{R}_m(z)$ 7.

8.
$$heta_k = G_{\varrho}^{-1} \sum_{z \sim \rho} \varrho(z) \hat{R}_m(z) \phi(z)$$

9. Return a greedy policy wrt $\Phi \theta_{K-1}$

Recall that
$$G_arrho = \sum_{z \in \mathcal{C}} \phi(z) \phi(z)^ op$$
 .

PERFORMANCE GUARANTEE

For any MDP feature-map pair (M, ϕ) and any $\varepsilon' > 0$,

LSPI-G can produce a policy π such that its suboptimality gap δ satisfies

$$\delta \leq rac{2(1+\sqrt{d})}{(1-\gamma)^2} ilde{arepsilon}(M,\phi)+arepsilon'\,,$$

where $ilde{arepsilon}(M,\phi) = \sup_{\pi\in\Pi_{\phi}} \inf_{ heta} ||\Phi heta - q^{\pi}||_{\infty}$

with a total runtime of

$$\operatorname{poly}\left(d,\frac{1}{1-\gamma},A,\frac{1}{\varepsilon'}\right)$$

We saw \sqrt{d} is inevitable but is $\frac{1}{(1-\gamma)^2}$ also inevitable?

Theorem (LSPI error amplification lower bound)

For every $\gamma \in [0,1),$

there is a featurized MDP (M,ϕ) , its policy π_0 , and a distribution μ over ${\mathcal S}$ s.t.

LSPI with access to true Q-functions produces a sequence of policies π_0, π_1, \ldots satisfying

$$\mu v^* - rac{c ilde{arepsilon}(M,\phi)}{(1-\gamma)^2} \geq \sup_{k\geq 0} \mu v^{\pi_k},$$

where c is a universal constant independent of other variables.

STATE-AGGREGATION

Suppose that $S = \{1, \ldots, S\}$, $A = \{1, \ldots, A\}$, and S has a partition $\{S_i\}_{i=1}^d$.

State-aggregation is the following feature map:

$$\phi_j(s,a) = \mathbb{I}\{s \in \mathcal{S}_{ ext{ceil}(j/A)}\}\mathbb{I}\{ ext{rem}(j-1,A) +$$

where $\phi(s,a) \in \mathbb{R}^{Ad}$ and $\operatorname{rem}(x,y)$ is the remainder of x/y.

- +1 = a},

```
import numpy as np
A = 3; d = 2
phi = np.arange(A * d) + 1 # [ 1, ..., 6])
ceil = np.ceil(phi / A).astype(np.int) # [1, 1, 1, 2, 2, 2]
rem_1 = np.remainder(phi - 1, A) + 1 # [1, 2, 3, 1, 2, 3]
Is = ceil == 2 # [0, 0, 0, 1, 1, 1]
Ia = rem_1 == 1 # [1, 0, 0, 1, 0, 0]
Is * Ia # [0, 0, 0, 1, 0, 0]
```


PROOF IDEA

OK, so
$$\frac{1}{(1-\gamma)^2}$$
 is real.

Can we avoid it with a different algorithm?

Yes! Politex can!

PSEUDO-ALGORITHM OF POLITEX

1. Given the feature map ϕ , find \mathcal{C} and ρ . 2. Let $heta_{-1} = 0$ and $ar{q}_{-1} = \hat{q}_{-1} = \Pi \Phi heta_{-1}$ 3. For $k=0,1,2,\ldots,K-1$ do

- Let π_k be a Boltzmann policy induced by \bar{q}_{k-1} 4.
- For each $z\in \mathcal{C}$ do 5.
- Get rollouts with π_k for H steps from z6.
- 7. Compute return estimate $\hat{R}_m(z)$

8.
$$heta_k = G_arrho^{-1} \sum_{z \sim
ho} arrho(z) \hat{R}_m(z) \phi(z)$$

Let $\hat{q}_k = \Pi \Phi heta_k$ and $ar{q}_k = ar{q}_{k-1} + \hat{q}_k$ 9. 10. Return all policies $(\pi_k)_{k=0}^{K-1}$

SUBTLE BUT IMPORTANT CHANGE

$$\pi_k(a|s) = rac{E_k(s,a)}{\sum_{b\in\mathcal{A}}E_k(s,b)}$$

where

$$E_k = \exp\left(\eta ar{q}_{k-1}
ight) = \exp\left(\eta \sum_{j=0}^{k-1} \hat{q}_j
ight)$$

This seemingly simple modification has an interesting connection to online algorithms.

WHY POLITEX PERFORMS BETTER?

$$v^* - v^{ar{\pi}_k} = {1\over k} (I - \gamma P_{\pi^*}) \sum_{j=0}^{k-1} (M_{\pi^*} - M_{\pi_j}) \hat{q}_j \ + {1\over k} (I - \gamma P_{\pi^*}) \sum_{j=0}^{K-1} (M_{\pi^*} - M_{\pi_j}) \ T_2 \leq {2\over 1-\gamma} \max_j \|q^{\pi_j} - \hat{q}_j\|_\infty$$

$(\pi_{\pi_j})(q^{\pi_j}-\hat{q}_j)$

NOTES

STATIONARY POINTS OF A POLICY SEARCH OBJECTIVE

Let $J(\pi) = \mu v^{\pi}$. A stationary point of J with respect to some set of memoryless policies Π is any $\pi\in\Pi$ such that

$$\langle
abla J(\pi), \pi' - \pi
angle \leq 0,.$$

If ϕ are state-aggregation features, any stationary point π satisfies

$$\mu v^\pi \geq \mu v^* - rac{4arepsilon_{ ext{apx}}}{1-\gamma}\,,$$

where $arepsilon_{\mathrm{apx}} = \sup_{\pi \in \Pi_{\phi}} \inf_{ heta} \| \Phi heta - q^{\pi} \|_{\infty}.$

LAST-ITERATE CONVERGENCE OF POLITEX?

Key: A Boltzmann policy is entropy regularized greedy policy!

$$egin{aligned} T_1 &= v^* - rac{1}{k} M_{\pi_k} ar{q}_{k-1} \ &\leq M_{\pi^*} \left(q^* - rac{1}{k} ar{q}_{k-1}
ight) + rac{\log A}{\eta} \end{aligned}$$

Then, we can use the almost same argument we had before.

$$egin{aligned} T_2 &= rac{1}{k} M_{\pi_k} ar{q}_{k-1} - v^{\pi_k} \ &= rac{1}{k} (I - \gamma P_{\pi_k})^{-1} M_{\pi_k} \, (ar{q}_{k-1} - kr - \gamma P_{\pi_k})^{-1} M_{\pi_k} \, (ar{q$$

Recall that $ar{q}_{k-1} pprox \sum_{j=0}^{k-1} q^{\pi_j}$, so

$$ar{q}_{k-1}-kr-\gamma P_{\pi_k}ar{q}_{k-1} \ pprox \gamma P\sum_{j=0}^{k-1}\left(M_{\pi_j}-M_{\pi_k}
ight) \hat{q}_j \le$$

$\mathcal{P}_{\pi_k} ar{q}_{k-1})$

0

STATE AGGREGATION AND EXTRAPOLATION FRIENDLINESS

Recall LSPI-G's performance upper-bound.

$$\delta \leq rac{2(1+\sqrt{d})}{(1-\gamma)^2} ilde{arepsilon}(M,\phi)+arepsilon'\,.$$

What's the source of this \sqrt{d} ?

BOUNDING EXTRAPOLATION ERROR

$$egin{aligned} &\left| \phi(z)^ op \hat{ heta} - \phi(z)^ op heta \ &\leq \left(\max_{z' \in C} ert arepsilon(z') ert
ight) \sum_{z' \in C} arepsilon(z') ert \phi(z)^ op G_arepsilon^{-1} \phi(z') \ &\leq \sqrt{d} \end{aligned}$$

BETTER DESIGN FOR STATE-AGGREGATION

Pick up one element s_i from each \mathcal{S}_i and let

$$egin{aligned} &
ho(s,a) = rac{1}{Ad} \sum_{i=1}^d \mathbb{I}\{s=s_i\}\ &\mathcal{C} = \{(s,a): s \in \{s_1,\ldots,s_d\}, a \in \mathcal{A}\ & ext{Then}, G_arrho = rac{1}{Ad} I, \ & ext{and} \ \phi(s,a)^ op \phi(s',a') = 1 ext{ iff } s,s' \in \mathcal{S}_i ext{ and } a \end{aligned}$$

a = a'.

$$egin{aligned} & \Longrightarrow \ \sum_{z'\in C} arrho(z') | \phi(z)^ op G_arrho^{-1} \phi(z')| \ & = \sum_{i=1}^d \sum_{a'\in\mathcal{A}} \mathbb{I}\{s'=s_i\} | \phi(s,a)^ op \phi(s',a) \end{aligned}$$

So, we don't have \sqrt{d} anymore!

|a')|=1

LSVI-G

For least-squares value iteration with G-optimal design (LSVI-G), a result performance guarantee holds.

Concretely, it can produce a policy π such that the suboptimality gap δ of π satisfies

$$\delta \leq rac{4(1+\sqrt{d})}{(1-\gamma)^2}arepsilon_{\mathrm{BOO}}+arepsilon'\,,$$

where

$$arepsilon_{\mathrm{BOO}} := \sup_{ heta} \inf_{ heta'} \| \Phi heta' - T \Pi \Phi heta \|_{\infty} \,.$$

LINEAR MDPS

An MDP-feature-map pair (M,ϕ) is said to be approximately linear if $\exists \zeta_r,\zeta_P\in\mathbb{R}_+$ s.t.

$$\zeta_r = \inf_ heta \| \Phi heta_r - r \|_\infty ext{ and } \zeta_P = \inf_W \| \Phi W$$
 -

If these hold, for any π and $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$,

$$egin{aligned} &\inf_{ heta} \|r+\gamma PM_{\pi}f-\Phi heta\|_{\infty} \ &\leq \inf_{ heta_r} \|r-\Phi heta_r\|_{\infty}+\gamma \inf_W \|P-\Phi W\|_{\infty} \ &\leq \zeta_r+\gamma \zeta_P \|f\|_{\infty} \,. \end{aligned}$$

$-P\|_{\infty}.$

 $\|f\|_{\infty}$

That's all! Any question?