
Lecture 7
Function approximation



Year 1963



Mathematics and Computation 17:155—161, 1963



The problem & the dynamic programming formulation

𝑣!∗ 0 = max Σ#$!% 𝑔# 𝑎# ∶ 𝑎!, … 𝑎% ≥ 0, 𝑎! +⋯+ 𝑎% = 𝑏 =?
𝑎!∗ , … , 𝑎%∗ =?

𝑣&∗(𝑠): optimal value achievable over [ℎ, 𝐻]
when 𝑠 ∈ [0, 𝑏] of the resource is used beforehand

𝑣%'!∗ 𝑠 = 0

𝑣&∗ 𝑠 = max
()*)+,-

𝑔& 𝑎 + 𝑣&'!∗ 𝑠 + 𝑎 1 ≤ ℎ ≤ 𝐻
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𝑣&(!∗

𝑠&(! = 𝑠& + 𝑎&
…

𝑎&

𝑣7,-∗ 𝑠 = 0

for	ℎ = 𝐻,𝐻 − 1,… , 1

𝜋$∗ 𝑠 =
argmax
&'(')*+

𝑔$ 𝑎 + 𝑣$,-∗ 𝑠 + 𝑎



How to solve this?

𝑣!∗ 𝑠 = max
#$%$&'(

𝑔! 𝑎 + 𝑣!)*∗ 𝑠 + 𝑎 1 ≤ ℎ
≤ 𝐻

𝑠 ∈ {0, 𝜖, 2𝜖, … , 𝑏 } – discretization!
+ use any method of interpolation

what if 𝑎*, … , 𝑎+ ∈ 0, 𝑏 ,? 

need &
-

,
storage, compute, brr…

“curse of dimensionality”

https://www.rand.org/content/dam/rand/pubs/reports/2006/R352.pdf

https://www.rand.org/content/dam/rand/pubs/reports/2006/R352.pdf


New idea (in 1963):
Generalized polynomial approximation

𝑓 𝑥 = Σ89-: 𝜃8𝜑8 𝑠 , 𝑠 ∈ −1,1

If using {𝑃8}, orthonormal set w.r.t.
uniform measure on [-1,1]

𝜃8 = ∫*-
- 𝑓𝜑8

+Gauss quadratures: eval 𝑓 at 𝑠; ;∈[>]

https://en.wikipedia.org/wiki/Legendre_polynomials https://en.wikipedia.org/wiki/Chebyshev_polynomials

𝑃*(𝑠)

𝑇*(𝑠)

https://en.wikipedia.org/wiki/Legendre_polynomials
https://en.wikipedia.org/wiki/Chebyshev_polynomials


vfun 𝑠, 𝜃 : = Σ*+!, 𝜃* 𝜑*(𝑠)

for 𝑖 ∈ [𝑟]:

𝑣&,. ≔ max
/0102'𝒔𝒊

𝑔& 𝑎 + vfun 𝒔𝒊 + 𝑎, 𝜃(&(!)

for 𝑗 ∈ [𝑑]:

𝜃7
(&) ≔ Σ.+!8 𝑤.𝑣&,.𝜑7 𝒔𝒊

precompute 𝒔𝟏, … , 𝒔𝒓 ∈ 0, 𝑏 ;

and 𝑤!, … , 𝑤8 ∈ ℝ
𝜃(%(!) ≔ 0, . . , 0 ∈ ℝ,

𝒔𝒊
ℎ

for ℎ = 𝐻,𝐻 − 1,… , 1:

𝑎

𝑔&

ℎ + 1

vfun(⋅, 𝜃(&(!))

𝑣&,.



~DQN



What did we gain?
Storage: 𝑂 𝐻(𝑑 + 𝑟)
Compute cost: 𝑂(𝐻 𝑑 + 𝑟 OptCost )

Compare with )
[

\
!

Gain?

For fixed OptCost, the cost is independent of the dimension 𝑝

At least we can run the procedure:
Fine-grained error control through the choice of 𝜙8 8, 𝑟 and 
OptCost

?



Relevance?
𝑣!∗ 𝑠 = max

#$%$&'(
𝑔! 𝑎 + 𝑣!)*∗ 𝑠 + 𝑎

⇒
𝑣!∗ 𝑠 = max

%∈𝒜! (
𝑟! 𝑠, 𝑎 + 𝔼- 𝑣!)*∗ (𝑓! 𝑠, 𝑎, 𝜉 )

Markov Decision Processes



The RL Hypothesis

Dynamic programming + 
function approximation 

= 
key technique to solve large scale

control problems

Markov Decision Problems



Empirical tests

IBM 7090 “supercomputer”

“Finally, if we combine these techniques – polynomial 
approximations and Lagrange multipliers – with that of 
successive approximations, there should be very few allocation 
processes which still resist our efforts.”



But.. does this work..?

1. Approximation: How large should be the degree of 
polynomials used to approximate 𝑣∗?

Smoothness, approximation theory, 
systems theory..

2. Computation: 
Given that we can approximate well 𝑣∗, say, 

𝑣∗ 𝑠 = Σ"#$% 𝜃"∗𝜑"(𝑠), 

how much computation is needed to get 𝜃∗ =
(𝜃$∗, … , 𝜃%∗)?

Can we do it in poly(𝐴, 𝐻, 𝑑, 1/𝜀) regardless of 
dimension (state space size)?



https://kenjudd.org/wp-content/uploads/2017/02/Curse_in_Dallas.pdf

https://kenjudd.org/wp-content/uploads/2017/02/Curse_in_Dallas.pdf


https://kenjudd.org/wp-content/uploads/2016/09/jgasweb.pdf
https://www.cambridge.org/core/journals/macroeconomic-dynamics/article/abs/solving-

largescale-rationalexpectations-models/A484F77266454AA52B535BF8B28257B8

https://kenjudd.org/wp-content/uploads/2016/09/jgasweb.pdf
https://www.cambridge.org/core/journals/macroeconomic-dynamics/article/abs/solving-largescale-rationalexpectations-models/A484F77266454AA52B535BF8B28257B8


Modeling assumptions

• 𝑣∗ ∈ ℱ realizable
• 𝑞∗ ∈ ℱ′realizable
• 𝑣. ∈ ℱ for any deterministic/stochastic ML 𝜋
• 𝑞. ∈ ℱ′ for any deterministic/stochastic ML 𝜋
• 𝑇.ℱ ⊂ ℱ, 𝑇.ℱ′ ⊂ ℱ′ for any deterministic/stochastic 

ML 𝜋
• 𝑇ℱ ⊂ ℱ, 𝑇ℱ′ ⊂ ℱ′
• 𝑇.ℝ𝒮 ⊂ ℱ, 𝑇.ℝ𝒮×1 ⊂ ℱ′ for any 

deterministic/stochastic ML 𝜋
• 𝑇ℝ𝒮 ⊂ ℱ, 𝑇ℝ𝒮×1 ⊂ ℱ′



Questions from slack



Matthew Pietrosanu 19 hours ago
I'll bite since this relates to some of my research in 
functional data analysis. The choice of basis {phi_j: 
j=1,...,d} isn't discussed much in the notes. Are there 
any particularly common choices in RL? (I can only 
speak to statistics, so I'm curious.) Or am I reading 
too much into what will ultimately be just a "toy" 
model (e.g., with the bases obtained by other means, 
say, NN?)
+9



Matthew Pietrosanu 19 hours ago
As a followup, though this involves infinite-dimensional 
state spaces.. Are there any settings where estimating 
this basis is a primary concern? (e.g., a smooth basis that 
describes some "optimal" d-dimensional subset of the 
infinite-dimensional space of functions.) In such a 
setting, estimating Phi (as a matrix) along some grid in S 
might not be adequate (e.g., the basis described by Phi 
may be non-smooth). Are there any approaches in RL to 
deal with this? (Again, maybe this isn't even a relevant 
problem.)
+2


