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The problem & the dynamic programming formulation
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vy, (s): optimal value achievable over [h, H]
when s € [0, b] of the resource is used beforehand
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vy (s) = [ Jnax gn(a) + vy (s +a) 1<h<H



SH = SH-1 T QH-1

Vi+1(s) =0 H -

forh=HH-1,..,1 H-1"

U;;(S) = . Ap-1

max a)+v..(s+a
Osasb-s gh( ) h+1( )

_ h+1 -

i (s) =
argmax gn(a) + vy, (s + a) <>s1 =0
-0

0<as<b-s



Dynamic Programming

1%
need (—) storage, compute, brr...

“curse of dimensionality”

https://www.rand.org/content/dam/rand/pubs/reports/2006/R352.pdf



https://www.rand.org/content/dam/rand/pubs/reports/2006/R352.pdf

New idea (in 1963):
Generalized polynomial approximation

f(x) = Zf_1 0, 0i (), s € [—1,1]

If using {P} }, orthonormal set w.r.t.
uniform measure on [-1,1]

1
Hk — f_lf(pk

+Gauss quadratures: eval f at {s;};e

https://en.wikipedia.org/wiki/Legendre polynomials https://en.wikipedia.org/wiki/Chebyshev polynomials



https://en.wikipedia.org/wiki/Legendre_polynomials
https://en.wikipedia.org/wiki/Chebyshev_polynomials

precompute sS4, ..., S, € [0,b]?
and wy, ..., w,. ER
o+ .= (0,..,0) € R4
forh=H,H-1,..,1:

fori € [r]:

= . (h+1)
Vp i Osznsa}ﬁst gr(@) + viun(s; +a, 6 )

for j € [d]:

h
Hj( )= L= Wivp,i9;(S;)

viun(s, 8):= 2¢_, 6, 0i(s)
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= Fitted value
Iiteration
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What did we gain?

Storage: O(H(d + 1))
Compute cost: O(H(d + r OptCost) )

Compare with (2)29!

€

Gain?
For fixed OptCost, the cost is independent of the dimension p

At least we can run the procedure:

Fine-grained error control through the choice of {¢ }«, and
OptCost



Relevance?

vp(s) = max gu(a) + vy, (s +a)

=

U;; (S) — aé?‘l%%s) Th (Sr a) + IEE [U;;+1(fh (S' a, 5))]

Markov Decision Processes



The RL Hypothesis

Dynamic programming +
function approximation

key technique to solve large scale
control problems

Markov Decision Problems



k | B

“Finally, if we combine these techniques — polynomial

~ approximations and Lagrange multipliers — with that of
successive approximations, there should be very few allocation "

processes which still resist our efforts.”

\




But.. does this work..?

1. Approximation: How large should be the degree of
polynomials used to approximate v*?

Smoothness, approximation theory,
systems theory..

2. Computation:
Given that we can approximate well v*, say,

v*(s) = ZL 167 9i(s),

how much computation is needed to get 8" =
(61, ...,03)?

Canwe doitin poly(4, H,d, 1/¢) regardless of
dimension (state space size)?



O’ Curse of Dimensionality, Where is Thy Sting?

Kenneth L. Judd
Hoover Institution and NBER
April 11, 2008

https://kenjudd.org/wp-content/uploads/2017/02/Curse in Dallas.pdf



https://kenjudd.org/wp-content/uploads/2017/02/Curse_in_Dallas.pdf

Math Tool II: Efficient Function Approximation

e Linear polynomial methods:
f(z,y,2,..)= Zaiqbi (z,y, 2, ...) , ¢; multivariate polynomials
i=1

— Simple tensor product approach produces approximations like

m m m

SO aatys

i=0 j=0 k=0
— Proper notion of “degree” in multivariate context is sum of powers
degree (a:"yjzk) =i+5+k
— Complete polynomials like
Z aijkxiyjzk
i+j+k<m
have far fewer terms by a ratio of nearly d!, but are almost as good

_ See GaSpaI—Judd (1997) https://kenjudd.org/wp-content/uploads/2016/09/jgasweb.pdf

https://www.cambridge.org/core/journals/macroeconomic-dynamics/article/abs/solving-
largescale-rationalexpectations-models/A484F77266454AA52B535BF8B28257B8



https://kenjudd.org/wp-content/uploads/2016/09/jgasweb.pdf
https://www.cambridge.org/core/journals/macroeconomic-dynamics/article/abs/solving-largescale-rationalexpectations-models/A484F77266454AA52B535BF8B28257B8

Modeling assumptions

 v* € F realizable
* q* € F'realizable
 v™ € F for any deterministic/stochastic ML it
e g™ € F' for any deterministic/stochastic ML 7t

e T"F c F, T™F' < F' for any deterministic/stochastic
ML 1T

*TFCcF,TF cF

¢ TTR® c F, T"R>*4 c F' for any
deterministic/stochastic ML

* TR° c F,TR*4 c F'



Questions from slack



Matthew Pietrosanu 19 hours ago

I'll bite since this relates to some of my research in
functional data analysis. The choice of basis {phi_j:
j=1,...,d} isn't discussed much in the notes. Are there
any particularly common choices in RL? (I can only
speak to statistics, so I'm curious.) Or am | reading
too much into what will ultimately be just a "toy"
model (e.g., with the bases obtained by other means,
say, NN?)

+9



Matthew Pietrosanu 19 hours ago

As a followup, though this involves infinite-dimensional
state spaces.. Are there any settings where estimating
this basis is a primary concern? (e.g., a smooth basis that
describes some "optimal” d-dimensional subset of the
infinite-dimensional space of functions.) In such a
setting, estimating Phi (as a matrix) along some grid in S
might not be adequate (e.g., the basis described by Phi
may be non-smooth). Are there any approaches in RL to
deal with this? (Again, maybe this isn't even a relevant
problem.)

+2



