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Global access

Can get all the features at all states, can preprocess it

{ —uniform action-value realizability
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least-squares policy
evaluation



Least-squares Policy Evaluation

™ trajectories
1. Rollouts from a set C of well- = }
chosen state-action pairs
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Lemma (LSPE-G extrapolation error control): Fix any full-rank feature-map ¢ : Z — R% and take the
set C C Z and the weighting function ¢ € A;(C) as in the Kiefer-Wolfowitz theorem. Fix an arbitrary
policy 7 and let @ and €, such that g™ = ®6 + €, and assume that immediate rewards belong to the

interval [0, 1]. Let § be as in Eq. (6). Then, for any 0 < § < 1, with probability 1 — 4,
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d d(d+1)
H > H%E/\/E and m > (1= )22 log 3

d> log(d/e) log(d/&)
(1-y)3e?

Total # samples: [C|Hm =




Progress Lemma with Approximation Errors

Lemma (Geometric progress lemma with approximate policy improvement): Consider a memoryless
policy 7 and its corresponding value function v™. Let 7’ be any policy and definee : S — R via

T”U7r = Tﬂ-l’vﬂ- + €.
Then,
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Approximate Policy Iteration

Tv™ =Ty, 0™ +

Theorem (Approximate Policy Iteration): Let (7 ) >0, (€x) % be such that (11) holds for all k > 0. Then,
forany k > 1,
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Approximate Policy Iteration 2

Q. =q™ + 5;’ M,rqu =Mq., k=01,.... (13)

Corollary (Approximate Policy Iteration with Approximate Action-value Functions): The sequence
defined in (13) is such that
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Least-squares Policy Iteration with
G-optimal design (MC-LSPI)

1 Given the feature map ¢, find C and p as in the Kiefer-Wolfowitz theorem

2 Letf_1 =0

3 Fork=0,1,2,...,K —1do

Roll out with policy 7 := my, for H steps to get the targets R, (z) where z € C
and 7 (s) = arg max,(0x_1, p(s,a))
Solve the weighted least-squares problem given by Eq. (4) to get 6.

6 Return Qg _q
0 i 0 R : 4
= arg min 2 9(2)(< , p(2)) — m(Z)) (4)



Theorem (LSPI performance): Fix an arbitrary full rank feature-map ¢ : S x A — R%and let
K,m, H > 1. Assume that B2, holds. Then, for any 0 < ¢ < 1, with probability at least 1 — (, the policy
7 g which is greedy with respect to ®0x _; is §-suboptimal with
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In particular, for any ¢’ > 0, choosing K, H, m so that
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policy g is d-optimal with
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while the total computation cost is poly(




Offline planning

* This was called “global planning”

 |dea: Use the simulator to get a policy. Then keep
the policy, and run with it.

* No simulator needed while using the policy.

* LSPI is offline planner with global access



From global to local access

https://arxiv.org/abs/2108.05533

Efficient Local Planning with Linear Function
Approximation

Dong Yin, Botao Hao, Yasin Abbasi-Yadkori,
Nevena Lazi¢, Csaba Szepesvari



https://arxiv.org/abs/2108.05533

Algorithm 2 CONFIDENT MC-LSPI
1: Input: initial state p, initial policy parameter wp, number of iterations K, regularization coefficient A,
threshold 7, discount v, number of rollouts m, length of rollout n.
C < 0 /I Initialize core set.
for a € Ado
if C =0 or ¢(p,a) " (@) ®c + AI)~1é(p,a) > 7 then
C «+ CU{(p,a,o(p,a),none)}
end if
end for
zq < none, Yz € C  // Policy iteration starts. (%)
fork=1,...,Kdo
for z € C do
status, result «— CONFIDENTROLLOUT (m, n, Wk—1, 7, Zs, 2a, Pc, A, T)
if status = done, then z, < result; else C <— C U {result} and goto line ()
end for
Wp (‘ng)c + AI)_lq)qu
: end for
: return wg _ i, or equivalently, the policy 7, , in the form of Eq. (3.1).
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Algorithm 1 CONFIDENTROLLOUT
1: Input: number of rollouts m, length of rollout n, policy parameter w, discount -y, initial state s, initial

action ag, feature matrix ®¢, regularization coefficient A, threshold 7.

2: fori=1,...,mdo

3:  8;0 < S0, @i < g, query the simulator, obtain reward r; o <— 7(s;0,a;,0), next state s; ;.
4: fort=1,...,ndo

5: Query the simulator with (s;¢,a), Va € A.

6: Obtain rewards 7 (s; ¢, a), feature vectors ¢(s; 1, a), next states s; ,(a), Va € A.
% if there exists a’ € A such that ¢(s; 4, a') " (2] ®¢c + A1) "1¢(si4,a’) > 7 then
8: status <— uncertain, result <— (s;,a’, ¢(s;,a’), none)

9: return status, result
10: end if
11: Q; ¢ < argmaXge A wT¢(3i,ta a), Tig < T(Sig, it)s Sipe1 Sg,t(ai,t)-

12:  end for
13: end for

) 1 \m S, oy
: status <— done, result <— == > "7, > 0" YT
: return status, result
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Theorem

Under uniform { realizability, w.p. = 1 — 6,
Confident MC-LSPI obtains an

Vd { H? + ¢
optimal policy with at most
0 (poly(d, 4, B, H,1/¢,log (1/6)))

simulation calls, while the total computation cost is
also polynomial in the same factors.

Here B is a bound on the 2-norm of the parameter
vectors of policies.



Can we do better?

Theorem (Query lower bound: large action sets): Forany e > 0,0 < § < 1/2, positive integer d and for
any (4, €)-sound online planner P there exists a “featurized-MDP” (M, ¢) with rewards in [0, 1] with
e*(M, ®) < e such that when interacting with a simulator of (M, ¢), the expected number of queries

used by P is at least
1 (Ve
Q| exp ( c )

32\ ¢

..just another needle in the haystack argument..



and when A = 0(1)?

Theorem (Query lower bound: small action sets, fixed-horizon objective): Fore > 0,0 < § < 1/2and

positive integer d, let
d(£)?
u(d,€,0) = {exp( (286) )J .

Then, forany e > 0,0 < § < 1/2, positive integers A, H, d such that d < A* and for any online planner
P that is (4, €)-sound for MDPs with at most A actions and the H-step criterion, there exists a
“featurized-MDP” (M, ¢) with A actions and rewards in [0, 1] such that when interacting with a
simulator of (M, ¢), the expected number of queries used by P is at least
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Questions from slack



Ehsan Imani 3 days ago

ML textbooks usually motivate PCA by noting that
oftentimes real-world data is mostly within a small
linear subspace of our d-dimensional space. Would
an assumption like this rule out the pathological case
of nearly-orthogonal vectors that lead to the lower
bound?
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Jiamin He 11 hours ago

The approximation error appears in the bound of
LSPI,

2(1++Vd)e/ (1 —7y)?,
can not be controlled by the algorithm. Looks like it is
also a major concern of some people according to
the endnote. Why shouldn’t we be worried about it?
Is it possible that controlling the size of the ball

(epsilon) may also increase the dimension d? Would
a large value of y be a problem here?
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