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RL Theory

Batch RL / 17. Introduction

Batch learning is concerned with problems when a learning algorithm must work with data
collected in some manner that is not under the control of the learning algorithm: on a batch of
data. In batch RL the data is given in the form of a sequence of trajectories of varying length,
where each trajectory is of the form ,
where  is chosen in a causal fashion (based on “past” data), , where 

 is a collection of probability distributions over pairs of reals and states, as
usual (when we want to allow stochastic rewards).

Batch RL problems fall into two basic categories:

These two problems are intimately related. On the one hand, a good value predictor can
potentially be used to �nd good policies. On the other hand, a good policy optimizer can also
be used to decide about whether the value of some policy is above or below some �xed
threshold by appropriately manipulating the data fed to the policy optimizers. One can then
put a binary search procedure around this decision routine to �nd out the value of some policy.

Value prediction problems have some common variations. In policy evaluation, rather than
evaluating a policy for some �xed initial distribution, the goal is to estimate the entire value
function of the policy. Of course, this is at least as hard as the simpler, initial value estimation
problem. However, much of the hardness of the problem is already captured by the initial
value estimation problem. In initial value prediction, oftentimes the goal is to predict an
interval that contains the true unknown value with a prescribed probability, rather than just
producing a “point estimate”. In the case of policy evaluation, the analogue is to predict a set
that contains the true unknown value function with a prescribed probability. Here, a simpler
goal is to estimate con�dence intervals for each potential input (state), which when “pasted
together” can be visualized as forming a con�dence band.

There is also the question of how to collect data. In statistics, the problem of designing a
“good way” of collecting the data is called the experimental design problem. The best is of

17. Introduction

τ = (S0, A0, R0, S1, A1, R1, … , St, At, Rt, St+1)
Ai (Rt, St+1) ∼ QAt

(St)
Q = (Qa(s))s,a

Value prediction: Predict the value  of using a policy  from the initial distribution ,
where both  and  are given in an explicit form.

1 μvπ π μ

μ vπ

Policy optimization: Find a good (ideally, near optimal) policy given the batch of data from
an MDP.
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course, if data can be collected in an active manner: This is when the data collection strategy
changes in response to what data has been collected so far.

The problem of designing good active data collection strategies belongs to the bigger group of
designing online learning algorithms. These are de�ned exactly based on that the data is
collected in a way that depends on what data has been previously collected. The last segment
of the part will be solely devoted to these online learning strategies.

In many applications, active data collection is not an option. There can be many reasons for
this: active data collection may be deemed to be risky, expensive, or just technically
challenging. When data is collected in a passive fashion, it may simply miss key information
that would allow for good solutions. Still, in this case, there may be better and worse ways
collecting data. Optimizing experimental designs is the problem of choosing good passive
data collection strategies that lead to good learning outcomes. This topic came up in the
context planning algorithms as they also need to create value function estimates and for this
the data collection is better to be planned so that learning can succeed.

Oftentimes though, there is no control over how data is collected. Even worse, the method that
was used to collect data may be unknown. When this is the case, not much can be done, as the
following example shows:

Consider a bandit problem with two actions, denoted by  and a Bernoulli reward. Assume
that the reward distribution is Bernoulli with parameter  when  and Bernoulli with
parameter  when . Let  be a random variable, which is normally unavailable, but
which, together with the action  taken completely determines the reward. For example, 
could have a Bernoulli distribution with parameter , and if action  is chosen, the
reward  obtained is

This is indeed consistent with that  has Bernoulli  distribution when  and has
Bernoulli  distribution when . Assume now that during data collection the actions are
chosen based on :  with some . For concreteness, assume that during data
collection . Then, the action is random, yet, if the data is composed of pairs that have
the distribution shared by , or , clearly no method will be able to properly
estimate the mean of  or , let alone choosing the action that leads to a higher reward.
It is not hard to construct examples when the conditional mean of the observed data makes an
optimal action look worse than a suboptimal action.

This is an example where the correct model cannot be estimated because of the way data is
collected: The presence of the spurious correlation between a variable that controls outcomes
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but is not recorded can easily make the data collected useless, regardless of quantities. This is
an instance when the model is unidenti�able even with an in�nite amount of data.

When data collection is as arbitrary as in the above example, only a very careful study of the
domain can tell us whether the model is identi�able or not from the data. Note that this is an
activity that involves thinking about the structure of the problem at hand. The best is of course
if data collection can be in�uenced to avoid building up spurious correlations. When data is
collected in a causal way (following a policy, while recording both the decisions made and the
data is used to make those decisions), spurious correlations are avoided and the remaining
problem is to guarantee su�cient “coverage” to achieve statistical e�ciency.

The plug-in method estimates a model and uses the estimated model in place of the real one

to solve the problem at hand. Let  be a �nite MDP,  be an
estimate. The estimate can be produced in a number of ways, but from the perspective of the
result that comes, how the estimate is produced does not matter.

We consider the discounted case with a discount factor . We will use  to denote

the value function of a policy  in  (as opposed to , which is the value function of policy in 

), and similarly, we will use  to denote the optimal value function in . We analogously
use  and . Every other quantity that is usually associated with an MDP but which now is

associated with  receives a “hat”. For example, we use  for the policy evaluation operator

of memoryless policy  in  (either for the state values, or the action-values), while we use 

to denote the Bellman optimality operator underlying  (again, both for the state and action-
values).

We start with a generic result about contraction mappings:

Proposition (residual bound): Let  be a -contraction over a normed vector space 
 and let  be a �xed-point of . Then for any ,

Proof: By the triangle inequality,

How good is the plug-in method?

M = (S,A, P , r) M̂ = (S,A, P̂ , r̂)

0 ≤ γ < 1 v̂π

π M̂ vπ

M v̂∗ M̂

q̂π q̂∗

M̂ T̂π

π M̂ T̂

M̂

F : V → V γ

V x ∈ V F y ∈ V

∥x − y∥ ≤
∥Fy − y∥

1 − γ
. (1)

∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥
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Reordering and solving for  gives the result. 

An immediate implication is that good model estimates are guaranteed to give rise to
(relatively) good value estimates.

Proposition (value estimation error): Let  and assume that the rewards in 
are in the  interval. For any policy , the following holds:

Also,

Similarly,

and

Note that in general the value estimates are more sensitive to errors in the transition
probabilities then in the rewards. In particular, the transition errors can be magni�ed by a
factor as large as , while the reward errors are magni�ed by at most . Also note that
sometimes one can obtain tighter estimates with stopping earlier in the derivations of these
bounds. We will see some examples of how this can help later.

∥x − y∥ ≤ ∥Fx − Fy∥ + ∥Fy − y∥ ≤ γ∥x − y∥ + ∥Fy − y∥ .

|x − y| ■

Hγ = 1/(1 − γ) M

[0, 1] π

∥vπ − v̂π∥∞ ≤ Hγ (∥rπ − r̂π∥∞ + γ∥(Pπ − P̂π)vπ∥∞)

≤ Hγ (∥r − r̂∥∞ + γHγ∥P − P̂∥∞) .

(2)

(3)

∥v∗ − v̂∗∥∞ ≤ Hγ (∥r − r̂∥∞ + γ∥(P − P̂)v∗∥∞)

≤ Hγ (∥r − r̂∥∞ + γHγ∥P − P̂∥∞) .

(4)

(5)

∥qπ − q̂π∥∞ ≤ Hγ (∥r − r̂∥∞ + γ∥(P − P̂)vπ∥∞)

≤ Hγ (∥r − r̂∥∞ + γHγ∥P − P̂∥∞) .

(6)

(7)

∥q∗ − q̂∗∥∞ ≤ Hγ (∥r − r̂∥∞ + γ∥(P − P̂)v∗∥∞)

≤ Hγ (∥r − r̂∥∞ + γHγ∥P − P̂∥∞) .

(8)

(9)

Hγ Hγ
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Proof: To reduce clutter, we write  for . Let , where  is de�ned via 

. By the residual bound ,

The second inequality follows from separating  from the second term and bounding it using 

 and also using that , ,  and  and
�nally using that  is a nonexpansion. The remaining inequalities can be obtained in an
entirely analogous manner and hence their proof is omitted. 

The result just shown su�ces to quantify the size of the value errors. For quantifying the

policy optimization error that results from �nding an optimal (or near optimal) policy for ,
recall the Policy Error Bound from Lecture 6:

Lemma (Policy error bound - I.): Let  be a memoryless policy and choose a function 
 and . Then, the following hold:

This leads to the following result:

Theorem (bound on policy optimization error): Assume that the rewards both in  and 

belong to the  interval. Take any  and -optimal policy  in : . Then,
 is -optimal in  with  satisfying

Note that, up to a small constant factor, the optimization error is magni�ed by a factor of ,
the reward errors are magni�ed by a factor of , while the transition errors can get

∥ ⋅ ∥ ∥ ⋅ ∥∞ F = T̂π T̂π

T̂πv = r̂π + γP̂πv (1)

∥v̂π − vπ∥ ≤ Hγ∥T̂πvπ − vπ∥ = Hγ∥T̂πvπ − Tπvπ∥ ≤ Hγ (∥rπ − r̂π∥ + γ∥(Pπ − P̂π)vπ∥).

vπ

∥vπ∥ ≤ Hγ rπ = Mπr r̂π = Mπr̂ Pπ = MπP P̂π = MπP̂

Mπ

■

M̂

π

q : S × A → R ϵ ≥ 0

If  is -optimizing in the sense that  holds for every state 
 then  is  suboptimal: 

1 π ϵ ∑a π(a|s)q∗(s, a) ≥ v∗(s) − ϵ

s ∈ S π ϵ/(1 − γ) vπ ≥ v∗ − ϵ
1−γ

1 .

If  is greedy with respect to  then  is -optimizing with  and thus2 π q π 2ϵ ϵ = ∥q − q∗∥∞

vπ ≥ v∗ −
2∥q − q∗∥∞

1 − γ
1 .

M M̂

[0, 1] ε > 0 ε π M̂ v̂π ≥ v̂∗ − ε1

π δ M δ

δ ≤ (1 + 2γ)Hγε + 2H 2
γ {∥r − r̂∥∞ + γ∥(P − P̂)v∗∥∞} .

Hγ

H 2
γ
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magni�ed by a factor of up to , depending on the magnitude of .

Proof: Let  be a policy as in the theorem statement. Our goal now is to use the �rst part of the
“Policy error bound”, i.e., that  is -optimizing with some .

On the one hand, we have

Let  be de�ned by . From the previous inequality, we know that .
We also have

Hence, by Part 1. of the “Policy Error Bound I.” lemma from above,

By the triangle inequality and the assumption on ,

By Eq. ,

The result is obtained by chaining the inequalities:

As usual, it is worthwhile to clean up the foundations by considering the tabular case. In this
case, the model can be estimared by using sample means. To allow for a uni�ed presentation,
let the data available be given in the form of triplets of the form  where

 and  given  and 
. Introducing the visit counts

H 3
γ v∗

π

π ε′ ε′ > 0

Mπq̂π = v̂π ≥ v̂∗ − ε1 = Mq̂∗ − ε1 ≥ Mq̂π − ε1 .

z Mπq̂π = Mq̂π + z ∥z∥∞ ≤ ε

Mπq∗ = Mπq̂π + Mπ(q∗ − q̂π)
= Mq̂π + Mπ(q∗ − q̂π) + z

= Mq∗ + Mq̂π − Mq∗ + Mπ(q∗ − q̂π) + z

≥ Mq∗ − (2∥q̂π − q∗∥ + ε)1
= v∗ − (2∥q̂π − q∗∥ + ε)1 .

vπ ≥ v∗ − Hγ(2∥q̂π − q∗∥ + ε)1 .

π

∥q̂π − q∗∥∞ ≤ ∥q̂π − q̂∗∥∞ + ∥q̂∗ − q∗∥∞ ≤ γε + ∥q̂∗ − q∗∥∞ .

(8)

∥q∗ − q̂∗∥∞ ≤ Hγ (∥r − r̂∥∞ + γ∥(P − P̂)v∗∥∞) .

∥v∗ − vπ∥∞ ≤ Hγ(2∥q̂π − q∗∥ + ε)

≤ Hγ {2γε + 2Hγ (∥r − r̂∥∞ + γ∥(P − P̂)v∗∥∞)+ ε} . ■

Model estimation error: Tabular case

Ei = (Si, Ai, Ri, Si+1)
i = 1, … , n Si+1 ∼ PAi

(Si) E1, … , Ei−1, Si, Ai

E[Ri|Si, Ai, E1, … , Ei−1] = rAi
(Si)
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and , provided that the visit count for  is positive, for the
transition probability estimates we have

and for the reward estimate we have

For ensuring that these are always de�ned, let  be the uniform distribution over the
states and let  when . From the perspective of the results to be
presented, the particular values chosen here do not matter.

Consider now the simple case when the above triplets are so that for each state-action pair 
,  for some deterministic counts . Say, one has access to a

generative model (simulator) and for each state-action pair the model is used to generate a
�xed number of independent transitions. In this case, one can use Hoe�ding’s inequality.

In particular, de�ning

provided that , Hoe�ding’s inequality gives that with probability , for any 
,

from which it follows that with probability ,

where . Plugging the obtained deviation bound into our policy
suboptimality bound, we get that with probability ,

N(s, a, s′) =
n

∑
i=1

I(Si = s, Ai = a, Si+1 = s′)

N(s, a) = ∑s′ N(s, a, s′) (s, a)

P̂a(s, s′) =
N(s, a, s′)

N(s, a)

r̂a(s) =
1

N(s, a)

n

∑
i=1

I(Si = s, Ai = a)Ri .

P̂a(s)
r̂a(s) = 0 N(s, a) = 0

(s, a) N(s, a) = n(s, a) (n(s, a))s,a

β(n, ζ) =
log( SA

ζ
)

2n

⎷Ri ∈ [0, 1] 1 − 2ζ

s, a

|r̂a(s) − ra(s)| ≤ β(n(s, a), ζ) ,

|⟨P̂a(s) − Pa(s), v∗⟩| ≤ Hγβ(n(s, a), ζ) ,

1 − 2ζ

∥r̂ − r∥∞ ≤ β(nmin, ζ) ,

∥(P̂ − P)v∗∥∞ ≤ Hγβ(nmin, ζ) ,

nmin = mins,a n(s, a)
1 − ζ
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One can alternatively write this in terms of the total number of observations, . The best case
is when  for all  pairs, in which case  and the above bound
gives

It follows that for any target suboptimality , as long as , the number of observations
satis�es

we are guaranteed that the optimal policy of the estimated model is at most  suboptimal.
As we shall see soon, the optimal dependence on the horizon  is cubic, unlike the
dependence shown here.

In applications it may happen that one can change the data collection strategy a limited
number of times. This creates a scenario that is in between batch and online learning. This
setting can be thought to be between batch and online learning. From the perspective of online
learning, this is learning in the presence of constraints on the data collection strategy. One
such widely studied constraint is the number of switches of the data collection strategy. As it
happens, only very few switches are necessary to get the full power of online learning and this
is not really speci�c to reinforcement learning but follows because the empirical distribution
converges are a slow rate to the true distribution. For parametric problems, the rate is 

 where  is the number of observations. Thus, to change “accuracy” of the estimates
of any quantity in a signi�cant fashion, the sample size should increase by much, which
means, few changes to the data collection are su�cient. In other words, there is no reason to
change the data collection strategy before one obtains su�cient new evidence that can help
with deciding in what way the data collection strategy should be changed. This usually means
that with only logarithmically many changes in the total sample size, one gets the full power
of online methods.

δ ≤ (1 + 2γ)Hγε + 2H 2
γ (1 + γHγ)β(nmin, ζ) .

n

n(s, a) = nmin (s, a) n = SAnmin

δ ≤ (1 + 2γ)Hγε + 2H 2
γ (1 + γHγ) SA

log( SA
ζ
)

2n
.

⎷δtrg n

n ≥
8H 6

γ SA log( SA
ζ
)

δ2
trg

,

δtrg

Hγ

Notes

Between batch and online learning

O(1/√n) n

Batch RL with no access to state information
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For simplicity, we stated the batch learning problem in a way that assumes that the states in
the transitions are observed. This may be seen as problematic. One “escape” is to treat the
whole history as the state: Indeed, in a causal, controlled stochastic process, the history can
always be used as a Markov state. Because of this, the assumption that the state is observed is
not restrictive, though the state space becomes exponential in the length of the trajectories.
This reduces to the problem to learning in large state-space MDPs. Of course, even lower
bounds for planning tell us that in lack of extra structure, all algorithms need a sample size
proportional to the size of the state-action space, hence, one needs to add extra structure to
deal with this case, such as function approximation. It also holds that if one uses, say, linear
function approximation, then only the features of the states (or state-action pairs) need to be
recorded in the data.

Whether a causal e�ect can be learned from a batch of data (to be more precise, from data
drawn from a speci�c distribution) is the topic of causal reasoning. In batch RL, the “e�ect”
is the value of a policy, which, in the language of causal reasoning, would be called a
multistage treatment. As the example in the text shows, in batch RL, just because of our
assumptions on how the data is collected, the identi�ability problem is just “assumed away”.
When the assumption on how the data is generated/collected is not met, the tools of causal
reasoning can potentially be still used. It is important to emphasize though that there is no
causality without assuming causality. The statements that causal reasoning can make are
conditional on the data sampling assumptions met. Even “causal discovery” is contingent on
these assumptions. However, with care, oftentimes it is possible to argue for that some
suitable assumptions are met (e.g., arguing based on what information is available at what
time in a process), in which case, the nontrivial tools of causal reasoning may be very useful.

Nevertheless, especially in engineered systems, our standard data collection assumptions are
reasonable and can be arranged for, though in large engineered systems, mistakes, such as not
logging critical quantities may happen. One example of this is an action to be taken is
overriden by some part of a system, which will, say, later be turned o�. Clearly, if no one logs
the actual actions taken, the e�ects of actions become unidenti�able. As we shall see later,
batch RL and the causality literature share some of their vocabulary, such as “instrumental
variables”, “propensity scores”, etc.

Plug-in generally means that a model is estimated and then is used as if it was the “true”
model. In control, when a controller (policy) is derived with this approach, this is known as the
“certainty equivalence” controller. The “certainty equivalence principle” states that the
“random” errors can be neglected. The principle originates from the observation that in
various scenarios, the optimal controller (optimal policy) has a special form that con�rms this

Causal reasoning and batch RL

Plug-in or certainty equivalence
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principle. In particular, this was �rst observed in the control of linear quadratic Gaussian
control, where the optimal controller can be obtained by solving for the optimal control under
perfect state information then substituting optimal state prediction for the the perfect state
information. This strict optimality result is quite brittle. As we shall see soon, from the
perspective of minimax optimality, certainty equivalent policies are not a bad choice.

In the early RL literature, online learning was dominant. When people tried to apply RL to
various “industrial”/”applied” settings, they were forced to think about how to learn from
data collected before learning starts. One of the �rst papers to push this agenda is the
following one:

Tree-Based Batch Mode Reinforcement Learning Damien Ernst, Pierre Geurts, Louis
Wehenkel; 6(18):503−556, 2005.

Earlier mentions of “batch-mode RL” include

E�cient Value Function Approximation Using Regression Trees (1999) by Xin Wang ,
Thomas G. Dietterich, Proceedings of the IJCAI Workshop on Statistical Machine Learning
for Large-Scale Optimization. pdf

Even in online learning, e�cient learning may force one to save all the data to be used for
learning. The so-called LSTD algorithm, and later the LSPI algorithm, were explicitly
proposed to address this challenge:

J. A. Boyan. Technical update: least-squares temporal di�erence learning. Machine
Learning, 49 (2-3):233–246, 2002.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning
Research, 4:1107–1149, 2003a.

O�-policy learning refers to the case when an algorithm needs to produce value function (or
action-value function) estimates for some policy and the data available is not generated by the
policy to be evaluated. In all the above examples, we are thus in the setting of o�-policy
learning. The policy evaluation problem, accordingly, is often called the o�-policy policy
evaluation (OPPE) problem, while the problem of �nding a good policy is called the o�-policy
policy optimization (OPPO) problem.

For a review of the literature of around 2012, consult the following paper:

S. Lange, T. Gabel, M. Riedmiller (2012) Batch Reinforcement Learning. In: M. Wiering, M.
van Otterlo (eds) Reinforcement Learning. Adaptation, Learning, and Optimization, vol 12.
Springer, Berlin, Heidelberg pdf
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RL Theory

Batch RL / 18. Sample complexity in �nite MDPs

Let  be the set of state-action pairs. A -design assigns a count to every
member of , that is, to every state-action pair. In the last lecture we saw that

samples are su�cient to obtain a -suboptimal policy with high probability provided
that data is generated from a -design that assigns the same count to each state-action
pair and to get a policy one uses the straightforward plug-in approach that estimates the
rewards and transitions using empirical estimates and uses the policy that is optimal with
respect to the estimated model. Above, the dependence on the number of state-action pairs
is optimal, but the dependence on the horizon  is suboptimal. In the �rst half of

this lecture, I sketch how the analysis presented in the previous lecture can be improved to
get the optimal cubic dependence, together with a sketch that shows that the cubic
dependence is indeed optimal.

In the second half of the lecture, we consider policy-based data collection, or experimental
designs, where the goal is to �nd a near optimal policy from an initial state, where the data
consists of trajectories obtained by rolling out the data-collection policy from the said
initial state. Here, we will show a lower bound that shows that the sample complexity in
this case is at least as large , which shows that there exist an exponential
separation between both -designs and policy-based designs, and also between passive
and active learning. To see the latter, note that in the presence of a simulator, with only a
reset to an initial state, one can use approximate policy iteration with rollouts, or Politex
with rollouts, to get a policy that is near-optimal when started from the initial state that
one can reset to but with polynomially many samples in  and  (cf. Lecture 8 and
Lecture 14).

The improvement in the analysis of the plug-in method comes from two sources:

18. Sample complexity in �nite MDPs
Z = S × A Z

Z

n =
~
O(

H 6SA
δtrg

)

δtrg

Z

H = 1
1−γ

Ω(Amin(S,H))
Z

S, A H

Improved analysis of the plug-in method: First attempt
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In this section, we focus on the �rst aspect. The second aspect will be considered in the next
section.

We continue to use the same notation as in the previous lecture. In particular,  denotes

the “true” MDP,  denotes the estimated MDP and we put  on quantities related to this
second MDP. We further let  be one of the memoryless optimal policies of . For

simplicity, we will assume that the reward function in  is the same as in : As we have
seen, the higher order term in our error bound came from errors in the transition
probability; the simplifying assumption allows us to focus on reducing this term while
minimizing clutter. The arguments are easy to extend to the case when .

Let  be a policy whose suboptimality in  we want to bound. The idea is to bound the

suboptimality of  by its suboptimality in  and also by how much value functions for

�xed policies di�er when we switch from  to . In particular, we have

where  denotes an optimal policy in  and the inequality holds because .
The term marked as “opt. error” is the optimization error that arises when  is not (quite)

optimal in . This term is controlled by the choice of . For simplicity, assume for now

that  is an optimal policy in , so that we can drop this term. We further assume that  is

a deterministic optimal policy of .

It remains to bound the �rst and last terms. Both of these terms have the form , i.e.,
the di�erence between the value functions of the same policy  in the two MDPs (here,  is
either  or ). This di�erence, similar to the value di�erence identity, can be expressed as

a function of the di�erence , as shown in the next result:

Lemma (value di�erence from transition di�erences): Let  and  be two MDPs sharing
the same state-action space, rewards, but di�ering in their transition probabilities. Let  be

Using a version of the value-di�erence identity and avoiding the use of the policy error
bound

1

Using Bernstein’s inequality in place of Hoe�ding’s inequality2

M

M̂ ⋅̂
π∗ M

M̂ M

r̂ ≠ r

π̂ M

π̂ M̂

P P̂

v∗ − vπ̂ = v∗ − v̂∗ + v̂∗ − vπ̂

≤ vπ
∗

− v̂π
∗

+ v̂∗ − v̂π̂

opt. error

+ v̂π̂ − vπ̂ , (1)

π̂∗ M̂ v̂∗ = v̂π̂
∗

≥ v̂π
∗

π̂

M̂ π̂

π̂ M̂ π̂

M̂

vπ − v̂π

π π

π∗ π̂

P − P̂

M M̂

π



5/16/22, 11:22 PM 18. Sample complexity in finite MDPs - RL Theory

https://rltheory.github.io/lecture-notes/batch-rl/lec18/ 3/16

a memoryless policy over the shared state-action space of the two MDPs. Then, the
following identities holds:

Proof: We only need to prove  since  follows from this identity by symmetry.
Concerning the proof of , we start with the closed form expression for value functions.
From this we get

Inspired by the elementary identity that states that , we calculate

�nishing the proof. 

Note that in , the empirical transition kernel  appears through its inverse by left-

multiplying , while in , through , it appears by right-multiplying the
same deviation term. In the remainder of this section we use , but in the next section we
will use .

Combining  with our previous inequality, we immediately get that

Assume that  is obtained by sampling  next states at each state-action pair. By
Hoe�ding’s inequality and a union bound over the state-action pairs, for any �xed 

 and , with probability , we have

vπ − v̂π = γ(I − γPπ)−1Mπ(P − P̂)v̂π

δ(v̂π)

,

v̂π − vπ = γ(I − γP̂π)−1Mπ(P̂ − P)vπ

δ̂(vπ)

.





(2)

(3)

(2) (3)
(2)

vπ − v̂π = (I − γPπ)−1rπ − (I − γP̂π)−1rπ .

1
1−x

− 1
1−y

= x−y

(1−x)(1−y)

vπ − v̂π = (I − γPπ)−1 [(I − γP̂π) − (I − γPπ)](I − γP̂π)−1rπ

= γ(I − γPπ)−1 [Pπ − P̂π](I − γP̂π)−1rπ

= γ(I − γPπ)−1Mπ [P − P̂]v̂π ,

■

(3) P̂

Mπ(P̂ − P) (2) v̂π

(3)
(2)

(3)

v∗ − vπ̂ ≤
γ

1 − γ
[∥(P − P̂)vπ

∗

∥∞ + ∥(P − P̂)vπ̂∥∞] . (4)

P̂ m

v ∈ [0,H]SA 0 ≤ ζ < 1 1 − ζ
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and in particular with , we have

Controlling the second term in  requires more care as  is random and depends on the

same data that is used to generate . To deal with this term, we use another union bound.

Let  be the set of all possible value functions that we can obtain by
considering deterministic policies. Since by construction  is also a deterministic policy, 

. Hence,

and thus by a union bound over the  functions  in , we get that with probability 
,

Putting things together, we see that

which reduces the dependence on  of the sample size bound from  to . As we shall
see soon, this is not the best possible dependence on . This method also falls short of
giving the best possible dependence on the number of states. In particular, inverting the
above bound, we see that with this method we can only guarantee a -optimal policy if the
total number of samples,  is at least

while below we will see that the optimal bound is .

∥(P − P̂)v∥∞ = H√
log(SA/ζ)

2m
(5)

v = vπ
∗

∥(P − P̂)vπ
∗
∥∞ =

~
O (H/√m) .

(4) π̂

P̂
~
V = {vπ : π : S → A}

π̂

v̂π̂ ∈
~
V

∥(P − P̂)v̂π̂∥∞ ≤ sup
v∈

~
V

∥(P − P̂)v∥∞ .

|
~
V | ≤ AS v

~
V

1 − ζ

∥(P − P̂)v̂π̂∥∞ ≤ H√ log(SA|
~
V |/ζ)

2m
= H√

log(SA/ζ) + S log(A)

2m
=

~
O(H√S/m) .

v∗ − vπ̂ =
~
O(H 2√S/m) ,

H H 6 H 4

H

δ

n = SAm

~
O(S 2AH 4/δ2)

~
O(SAH 3/δ2)

Improved analysis of the plug-in method: Second attempt
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There are two further ideas that help one achieve the sample complexity which will be seen
to be optimal. One is to use what is known as Bernstein’s inequality in place of Hoe�ding’s
inequality, together with a clever observation on the “total variance” and the second is to
improve the covering argument. The �rst idea helps with improving the horizon
dependence, the second helps with improving the dependence on the number of states. In
this lecture, we will only cover the �rst idea and sketch the second.

Bernstein’s inequality is a classic result in probability theory:

Theorem (Bernstein’s inequality): Let  and let  be an i.i.d.

sequence and de�ne  as the sample mean of this sequence: .
Then, for any , with probability at least ,

where .

To set expectations, it will be useful to compare this bound to Hoe�ding’s inequality. In
particular, in the setting of the lemma Hoe�ding’s inequality also applies and gives

Since in our case  (the value functions take values in the  interval), using 
 (which would give rise to the optimal sample size), Hoe�ding’s inequality

gives a bound of size  (cf. ). This is a problem: Ideally, we would
like to see  here, because inequality \cref{eq:vdeb} introduces an additional  factor.

We immediately see that for Bernstein’s inequality to make a di�erence, just focusing on

the �rst term in Bernstein’s inequality, we need . In fact, since 
, we see that this is also su�cient to take o� the  factor from

the sample complexity bound. It thus remains to be seen whether the variance could indeed
be this small.

To �nd this out, �x a state-action pair  and let  be an i.i.d.

sequence of next states at . Then,  has the

b > 0 X1, … ,Xm ∈ [0, b]

X̄m X̄m = 1
m

(X1 + ⋯ + Xm)
ζ ∈ (0, 1) 1 − ζ

|X̄m − E[X1]| ≤ σ√
2 log(2/ζ)

m
+

2
3
b log(2/ζ)

m
,

σ2 = Var(X1)

|X̄m − E[X1]| ≤ b√
log(2/ζ)

2m
.

b = H [0,H]
m = H 3/δ2

HH−3/2δ = H−1/2δ (5)
H−1δ H

σ = O(H 1/2)
b/m = H−2δ2 = o(H−1δ) H

(s, a) S ′
1, … ,S ′

m ∼ Pa(s)

(s, a) ((P̂ − P)vπ)(s, a) = (P̂a(s) − Pa(s))vπ
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same distribution as

De�ning  and , we see that it is  that appears

when Bernstein’s inequality is used to bound . It remains to be seen how
large values  can take on. Sadly, one can quickly discover that the range of 
is sometimes also as large as . Is Bernstein’s inequality a dead-end then?

Of course, it is not, otherwise we would not have introduced it. In particular, a better bound
is possible by directly bounding the maximum-norm of

which is close to the actual term that we need to bound. Indeed, by \cref{ } from the
value di�erence lemma,  and thus

The second term on the right-hand side is of order  (since  appears

there and both  and  have been seen to be of order ). As we expect 
 to be of order , we will focus on this term.

For simplicity, take now the case when  is a �xed, nonrandom policy (we need to bounded 
 for  and also for , the second of which is random). In this case, by a

union bound and Bernstein’s inequality, with probability ,

Multiplying both sides by , using a triangle inequality and the special
properties of , we get

The following beautiful result, whose proof is omitted, gives an  bound on the �rst
term appearing on the right-hand side of the above display:

Δ(s, a) =
1
m

m

∑
i=1

vπ(S ′
i) − Pa(s)vπ .

Xi = vπ(S ′
i) σ2

π(s, a) = Var(X1) σπ(s, a)

((P̂ − P)vπ)(s, a)
σπ(s, a) σπ(s, a)

H

δ(vπ) = (I − γPπ)−1Mπ(P − P̂)vπ ,

(2)
vπ − v̂π = γδ(v̂π)

vπ − v̂π = γδ(vπ) + γ(δ(v̂π) − δ(vπ)) .

1/m (P − P̂)(v̂π − vπ)

P − P̂ v̂π − vπ 1/√m

δ(vπ) 1/√m

π

δ(vπ) π = π∗ π = π̂

1 − ζ

|(P − P̂)vπ| ≤ √ 2 log(2SA/ζ)

m
σπ +

2H
3

log(2/ζ)

m
1 .

(I − γPπ)−1Mπ

(I − γPπ)−1Mπ

|δ(vπ)| ≤ (I − γPπ)−1Mπ|(P − P̂)vπ|

≤ √ 2 log(2SA/ζ)
m

(I − γPπ)−1Mπσπ +
2H 2

3
log(2SA/ζ)

m
1 . (6)

O(H 3/2)
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Lemma (total discounted variance bound): For any discounted MDP  and policy  in , 

Since the bound that we get from here is  and not , “we are saved”. Indeed,
plugging this into  gives

which holds with probability . Choosing , we see that both terms are 
. It remains to show that a similar result holds for . If we use the union bound that we
used before, we introduce an extra  factor. Avoiding this extra  factor requires new ideas,
but with these we get the following result:

Theorem (upper bound for -designs): Let  be an optimal policy in the MDP whose

transition kernel is , a kernel estimated based on a sample of  next states from each

state-action pair. Letting  and , if

then with probability ,  is -optimal, where  is a universal constant. In short, for

any  there exist an algorithm that produces a -optimal policy from a total
number of

samples under a uniform -design.

It remains to be seen whether the same sample complexity holds for larger values of , e.g.,
for .

M π M

∥(I − γPπ)−1Mπσπ∥∞ ≤ √ 2
(1−γ)3 .

H 3/2 H 2

(6)

∥δ(vπ)∥∞ ≤ 2√
H 3 log(2SA/ζ)

m
+

2H 2

3
log(2SA/ζ)

m
,

1 − ζ m = H 3/δ2 O(δ)
π = π̂

S S

Z π̂

P̂ m

0 ≤ ζ < 1 0 ≤ δ ≤ √H

m ≥
cγH 3 log(SAH/δ)

δ2

1 − ζ π̂ δ c

0 ≤ δ ≤ √H δ

~
O(

γSAH 3

δ2
)

Z

δ

δ = H/2
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A natural question is whether we can improve on the  upper bound, or whether
this can be matched by a lower bound. For this, we have the following result:

Theorem (lower bound for -designs): Any algorithm that uses -designs and is
guaranteed to produce a -optimal policy needs at least  samples.

Proof (sketch): As we have seen in the proof of the upper bound, the key to achieve the

cubic dependence was that the sample mean  of  i.i.d. bounded random variables is

within a distance of  to the true mean. In a way, the converse of this is also true: It
is “quite likely” that the distance between the sample and true mean is this large. This is
not too hard to see for speci�c distributions, such as when the  are normally distributed,
or when  are Bernoulli distributed (in a way, this is the essence of the central-limit
theorem, though the central-limit theorem is restricted for ).

So how can we use this to establish the lower bound? In an MDP the randomness comes
either from the rewards or the transitions. But in the upper bound above, the rewards were
given, so the only source of randomness is transitions. Also, the cubic dependence must
hold even if the number of states is a constant. What all this implies is that somehow
learning the transition structure with a few states is what makes the sample complexity
large as  (or ). Clearly, this can only happen if
the (small) MDP has self-loops. The smallest example of an
MDP with a self-loop is if one has an action and state such
that taking that action from that state leads to same action
with some positive probability, while with the
complementary probability the next state is some other
state. This leads to the structure shown on the �gure on the
right.

As can be seen, there are two states. The transition at the �rst state, call it state , is
stochastic and leads to itself with probability , while it leads to state  with probability 

. The reward associated with both transitions is . The second state, call it state , has
a self-loop. The reward associated with this transition is zero.

There are no actions (alternatively, there is only one action at both states). However, if we
can show that in the lack of knowledge of , estimating the value of state  up to a precision

Lower bound for -designsZ
H 3SA/δ2

Z Z

δ Ω(H 3SA/δ2)

X̄m m

σ√1/m

Xi

Xi

m → ∞

γ → 1 H → ∞

1
p 2

1 − p 1 2

p 1
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of  takes  samples, the sample complexity result will follow. In particular, if we
repeat the transition structure  times (sharing the same two states), one can make the
value of  for one of this actions ever slightly so di�erent from the others so that its value
di�ers by (say)  from the others. Then, by construction, a learner who uses fewer than 

 total samples at state  will not be able to reliably tell the di�erence between
the value of the special action and the other actions, hence, will not be to choose the right
action and will thus be unable to produce a -optimal policy. To also add the state
dependence, the structure can then be repeated  times.

So it remains to be seen whether the said sample complexity result holds for estimating the
value of state . Rather than giving a formal proof, we give a quick heuristic argument,
hoping that readers will �nd this more intuitive.

The starting point for this heuristic argument is the general observation that sample
complexity questions concerning estimation problems are essentially questions about
the sensitivity of the quantity to be estimated to the unknown parameters. Here,
sensitivity means how much the quantity changes if we change the underlying parameter.
This sensitivity for small deviations and a single parameter is exactly the derivative of the
quantity of interest with respect to the parameter.

In our special case, the value of state , call it  (also showing the dependence on ) is
the quantity to be estimated. Since the value of state  is zero,  must satisfy 

. Solving this we get

The derivative of this with respect to  is

To get a -accurate estimate of , we need

Inverting for , we get that

δ Ω(H 3/δ2)
A

p

2δ
Ω(AH 3/δ2) 1

δ

S

1

1 vp(1) p

2 vp(1)
vp(1) = p(1 + γvp(1)) + (1 − p)1

vp(1) =
1

1 − pγ
.

p

d

dp
vp(1) =

γ

(1 − γp)2
.

δ vp0(1)

δ ≥ |vp0(1) − vX̄m
(1)| ≈

d

dp
vp(1)|p=p0 |p0 − X̄m| =

γ

(1 − γp0)2
|p0 − X̄m|

≈
γ

(1 − γp0)2
√ p0(1 − p0)

m
.

m

2



5/16/22, 11:22 PM 18. Sample complexity in finite MDPs - RL Theory

https://rltheory.github.io/lecture-notes/batch-rl/lec18/ 10/16

It remains to choose  as a function of  to show that the above can be lower bounded by 
. If we choose , we have 

 and hence

Putting things together �nishes the proof sketch. 

A homework problem is included which explains how to �ll in the gaps in the last section of
the proof, while pointers to the literature are given that one can use to �gure out how to �ll
the remaining gaps.

When the data is generated by following some policy, we talk about policy based designs.
Here, the design decision is what policy to use to generate the data. The sample complexity
of learning with policy based designs is the number of observations necessary and
su�cient for some algorithm to �gure out a policy of a �xed target suboptimality, from a
�xed initial state, based on data generated by following a policy where the MDP where the
policy is followed can be any of the MDPs within the class.

Three questions arise then. (i) The �rst question (the design question) is what policy to
follow during data collection. If the policy can use the full history, the problem is not much
di�erent than online learning, which we will consider later. From this perspective the
interesting (and perhaps more realistic) case is when the data-collection policy is
memoryless and is �xed before the data collection begins. Hence, in what follows, we will
restrict our attention to this case. (ii) The second question is what algorithm to use to
compute the policy given the data generated. (iii) The �nal, third question is how large is
the sample complexity of learning with policy induced data for some �xed MDP class.

Learning and estimating a good policy from policy induced data is much closer to reality
than the same problem from -designs. Practical problems, such as problems in health
care, robotics, etc., are so that we can obtain data generated by following some �xed policy,
while it is usually not possible to demand obtaining sample transitions from arbitrary
state-action pairs.

m ≳
γ 2p0(1 − p0)

(1 − γp0)4δ2
.

p0 γ

1/(1 − γ)3 p0 = γ

1 − γp0 = 1 − γ 2 = (1 − γ)(1 + γ) ≤ 2(1 − γ)

γ 2p0(1 − p0)

(1 − γp0)4δ2
≥

γ 2γ(1 − γ)

24(1 − γ)4δ2
=

γ 3

24(1 − γ)3δ2
.

■

Policy-based designs

Z
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For simplicity, let us still consider the case of �nite state-action MDPs, but to further
simplify matters, let us now consider (homogenous kernel) �nite horizon problems with a
horizon . As it turns out, the plug-in algorithm of the previous section is still a good
algorithm in the sense that it achieves the optimal (minimax) sample complexity. However,
the minimax sample complexity is much higher than it is for -designs:

Theorem (sample complexity lower bound with policy induced data): For any , 
, any (memoryless) data collection policy  over the state-action spaces  and ,

for any  and any algorithm  that maps data that has  transitions to
a policy there exist an MDP  with state space  and action space  such that with
constant probability, the policy  produced by  is not -optimal with respect to the -
horizon total reward criterion when the algorithm is fed with data by following  in .

Proof (sketch): Without loss of generality assume that ; if there are more
states, just ignore them, while if there are fewer states then just decrease . Consider an
MDP where states  are organized in a chain under the e�ect of some actions, and
state  is an absorbing state with zero associated reward. For , let action 
be the one that gets to be chosen
with the smallest probability in
state  under the data generating
policy : .
We choose action  as the action
that moves the state from  to 
, deterministically. Any other action leads to state , deterministically. All rewards are
zero, except when transitioning from state  to state  under action , where the
reward is stochastic with a normal distribution with mean  either  or  and a
variance of one. The structure of the MDP is shown on the �gure in the left-hand side.

Now, because of the choice of , . Hence, the probability that starting from
state , following policy  for  steps will generate the sequence of states 

, including the critical transition from state  to state , is at most
. This transition is critical in the sense is that only data from this transition decides

whether in state  it is worth taking action  or not. In particular, if , taking  is
a poor choice, while if , taking  is the optimal choice. The expected number of
times this critical transition is seen is at most . With  observations, the

H

Z

S,A,H
0 ≤ δ π [S] [A]

n ≤ cAmin(S−1,H)/δ2 L n

M [S] [A]
π̂ L δ H

π M

S = H + 1
H

1, … ,H
H + 1 1 ≤ i ≤ H ai

i

π ai = arg mina∈[A] π(a|i)
ai

i i + 1
H + 1

H H + 1 aH
μ −2δ +2δ

ai π(ai|i) ≤ 1/A
1 π H

1, 2, … ,H,H + 1 H H + 1
(1/A)H

1 a1 μ = −2δ a1

μ = 2δ a1

m = n(1/A)H m
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value of  will be estimated up to an accuracy of . When this is smaller than ,
with constant probability, the sign of  cannot be decided and thus with constant
probability, any algorithm will fail to identify whether  should be taken in state  or not
(with a probability, of say, at least ). Plugging in the expected value of , we get that

the condition on  is that  where  is some universal constant.
Equivalently, the condition is that , which is the statement to be proven. 

The lower bound construction suggests that the best policy to be used in the lack of extra
information about the MDPs is the uniform policy. Note that a similar statement holds for
the discounted setting. The contrast between this lower bound and the polynomial upper
bound of the previous section are in strike contrast: Data obtained from following policies
can be very poor. One may wonder whether the situation can be improved assuming that
the data is obtained from a good policy (say,  optimal policy), but the proof of the
previous result in fact shows that this is not the case.

While the exponential lower bound on the sample complexity of learning from policy
induced data is already bad enough, one may worry that the situation could be even worse.
Could it happen that even the best algorithm needs double exponential number of samples?
Or even in�nite? A moment of thought shows that the latter is the case is switch to the
average reward setting: This is because in the average reward setting the value of an action
can depend on the value of a state whose hitting probability within an arbitrary �xed
number of transitions is positive, just arbitrarily low. Can something similar happen
perhaps in the �nite-horizon setting, or the discounted setting? As it turns out, the answer
is no. The previous lower bound gives the correct order of the sample complexity of �nding
a near-optimal policy using policy induced data:

Theorem (sample complexity upper bound with policy induced data): With 
 episodes of length  collected with the uniform policy

from a �xed initial distribution , with a constant probability, the plug-in algorithm
produces a policy that is -optimal when started from .

Proof (sketch): For simplicity assume that the reward function is known. Let  be the
logging policy, which is uniform. Again, assume that the plug-in algorithm produces a
deterministic policy.

μ O(√1/m) 2δ
μ

a1 1
1/2 m

n √cAH/n ≤ 2δ c > 0
n ≥ cAH/(4δ2)

■

2δ

m = Ω(S 3H 4Amin(H,S−1)+2/δ2) H

μ

δ μ

πlog
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The proof is based on the decomposition of the suboptimality gap of the policy  produced
that was used before. In particular, by ,

where as before,  denotes the value function of policy  in the empirically estimated
MDP. Further, we also used  as a shorthand for , where 

,

One then needs a counterpart of the value di�erence lemma. In this case, the following
version is convenient: For any policy ,

and

where  and  are  matrices. These can be proved by using the Bellman
equation for the action-value functions and a simple recursion and noting that 
.

Next, we can observe that  where  is a distribution over  which
assigns probability  to . This, combined with the value
di�erence identity makes  appear in the bounds. This is the probability
distribution over the state-action space after using  for  steps when the initial

distribution is . Now, as this is multiplied by , and for a given state-action pair 

, , using that 

 which holds because , we see that it su�ces if the ratios 

 (or their square root) are controlled. Above,  is the
number of times  is seen in the data, and  is the number of times  is
seen in the data in the th transition. Here we should also mention that we only control
these terms for state-action pairs 

 that satisfy  as the total contribution of the other state-action pairs
is , i.e., small. For these state action pairs,  is also positive and with high
probability, the counts are also positive.

π̂

(1)

v∗(μ) − vπ̂(μ) ≤ vπ
∗

(μ) − v̂π
∗

(μ) + v̂π̂(μ) − vπ̂(μ) , (7)

v̂π π

v(μ) ∑s μ(s)v(s)(= ⟨μ, v⟩)
v : [S] → R

π

qπH − q̂πH =
H−1

∑
h=0

(Pπ)h(P − P̂)v̂πH−h−1 ,

q̂πH − qπH =
H−1

∑
h=0

(P̂π)h(P̂ − P)vπH−h−1 ,

Pπ P̂π SA × SA

q0 = r = q̂0

vπ(μ) = ⟨μπ, qπ⟩ μπ [S] × [A]
μ(s)π(a|s) (s, a) ∈ [S] × [A]

νπ
h := μπ(Pπ)h

π h

μπ P − P̂

(s, a) ∥P(s, a) − P̂(s, a)∥1 ≲ 1/√N(s, a) ≤ 1/√Nh(s, a) ≈ 1/√mν
πlog

h

νπ
h (s, a) ≤ √νπ

h (s, a) 0 ≤ νπ
h ≤ 1

ρπh(s, a) := νπ
h (s, a)/ν

πlog

h (s, a) N(s, a)
(s, a) Nh(s, a) (s, a)

h

(s, a) νπ
h

(s, a) ≳ 1/m
O(1/m) ν

πlog

h
(s, a)
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Next, one can show that

This is done in two steps. First, show that . This follows from
the law of total probability: Write  as the sum of probabilities of all trajectories that
end with  after  transitions. Next, for a given trajectory, replace each occurrence of 
with  at the expense of introducing a factor of  (this comes from 

). The next step is to show that  also
holds. This inequality follows by observing that the uniform policy and the uniform mixture
of all deterministic (memoryless) policies induce the same distribution over the
trajectories. Then by letting  denote the set of all deterministic policies, using that 

, we have , where we used that 
.

Putting things together, applying a union bound when it comes to argue for  and
collecting terms gives the result. 

Finding a good policy from a sample drawn from a -design and �nding a good policy from
a sample given a generative model, or random access simulator of the MDP (which we
extensively studied in previous lectures on planning) are almost the same. The random
access model however allows the learner to determine which state-action pair the next
transition data should be generated at in reaction to the sample collected in a sequential
fashion. Thus, computing a good policy with a random access simulator gives more power
to the “learner” (or planner). The lower bound presented for -design can in fact be shown
to hold for the generative setting, as well (the proof in the paper cited below goes through
in this case with no changes). This shows that in the tabular case, adaptive random access
to the simulator provides no bene�ts to the planner over non-adaptive random access.

The result of the  sample complexity bound to �nd a -optimal policy with
uniform -design using the plug-in method is from the following paper:

Agarwal, Alekh, Sham Kakade, and Lin F. Yang. 2020. “Model-Based Reinforcement
Learning with a Generative Model Is Minimax Optimal.” COLT, 67–83. arXiv link

This paper also contains a number of pointers to the literature. Interestingly, earlier
approaches often used more complicated approaches which directly worked with value
functions rather than the more natural plug-in approach. The problem of whether the
plug-in method is minimax optimal in  design for �nite-horizon problem is open.

ρπh(s, a) ≤ Amin(h+1,S) .

νπ
h (s, a) ≤ Ah+1ν

πlog

h (s, a)
νπ
h

(s, a)
(s, a) h π

πlog Ah+1

π(a′|s′) ≤ 1 ≤ Aπlog(a′|s′) νπ
h (s, a) ≤ ASν

πlog

h (s, a)

DET
π ∈ DET νπ

h (s, a) ≤ ∑π′∈DET νπ′

h (s, a) = ASν
πlog

h (s, a)
|DET| = AS

π̂

■

Bibliographic remarks
Z

Z

O(H 3SA/δ2) δ

Z

•

Z
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The result which was included in this lecture limits the range of  to . Equivalently, the
result is not applicable for a small number of observations  per state-action pair. This
limitation has been removed in a follow-up to this work:

Li, Gen, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. 2020. “Breaking the
Sample Size Barrier in Model-Based Reinforcement Learning with a Generative Model.”
NeurIPS

This paper still uses the plug-in method, but adds random noise to the observed rewards to
help with tie-breaking.

The variance bound, which is the key to achieving the cubic dependence on the horizon is
from the following paper:

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax PAC bounds
on the sample complexity of reinforcement learning with a generative model.
Machine learning, 91(3):325–349, 2013.

This paper also has the essential ideas for the matching lower bound. The 2020 paper is
notable for some novel proof techniques, which were developed to bound the error terms
whose control is not included in this lecture.

The results for learning with policy-induced data are from

Xiao, Chenjun, Ilbin Lee, Bo Dai, Dale Schuurmans, and Csaba Szepesvari. 2021. “On the
Sample Complexity of Batch Reinforcement Learning with Policy-Induced Data.” arXiv

which also has the details that were omitted in these notes. This paper also gives a modern
proof for the -design sample complexity lower bound.

One may ask whether the results for -design that show cubic dependence on the horizon 
 extend to the case of large MDPs when value function approximation is used. In a special

case, this has been positively resolved in the following paper:

Yang, Lin F., and Mengdi Wang. 2019. “Sample-Optimal Parametric Q-Learning Using
Linearly Additive Features.” ICML arXiv version

which uses an approach similar to Politex in a more restricted setting, but achieves an
optimal dependence on .

δ √H

m

•

•

•

Z

Z

H

•

H
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