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RL Theory

Batch RL / 17. Introduction

Batch learning is concerned with problems when a learning algorithm must work with data
collected in some manner that is not under the control of the learning algorithm: on a batch of
data. In batch RL the data is given in the form of a sequence of trajectories of varying length,
where each trajectory is of the form ,
where  is chosen in a causal fashion (based on “past” data), , where 

 is a collection of probability distributions over pairs of reals and states, as
usual (when we want to allow stochastic rewards).

Batch RL problems fall into two basic categories:

These two problems are intimately related. On the one hand, a good value predictor can
potentially be used to �nd good policies. On the other hand, a good policy optimizer can also
be used to decide about whether the value of some policy is above or below some �xed
threshold by appropriately manipulating the data fed to the policy optimizers. One can then
put a binary search procedure around this decision routine to �nd out the value of some policy.

Value prediction problems have some common variations. In policy evaluation, rather than
evaluating a policy for some �xed initial distribution, the goal is to estimate the entire value
function of the policy. Of course, this is at least as hard as the simpler, initial value estimation
problem. However, much of the hardness of the problem is already captured by the initial
value estimation problem. In initial value prediction, oftentimes the goal is to predict an
interval that contains the true unknown value with a prescribed probability, rather than just
producing a “point estimate”. In the case of policy evaluation, the analogue is to predict a set
that contains the true unknown value function with a prescribed probability. Here, a simpler
goal is to estimate con�dence intervals for each potential input (state), which when “pasted
together” can be visualized as forming a con�dence band.

There is also the question of how to collect data. In statistics, the problem of designing a
“good way” of collecting the data is called the experimental design problem. The best is of

17. Introduction

τ = (S0, A0, R0, S1, A1, R1, … , St, At, Rt, St+1)
Ai (Rt, St+1) ∼ QAt

(St)
Q = (Qa(s))s,a

Value prediction: Predict the value  of using a policy  from the initial distribution ,
where both  and  are given in an explicit form.

1 μvπ π μ

μ vπ

Policy optimization: Find a good (ideally, near optimal) policy given the batch of data from
an MDP.
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course, if data can be collected in an active manner: This is when the data collection strategy
changes in response to what data has been collected so far.

The problem of designing good active data collection strategies belongs to the bigger group of
designing online learning algorithms. These are de�ned exactly based on that the data is
collected in a way that depends on what data has been previously collected. The last segment
of the part will be solely devoted to these online learning strategies.

In many applications, active data collection is not an option. There can be many reasons for
this: active data collection may be deemed to be risky, expensive, or just technically
challenging. When data is collected in a passive fashion, it may simply miss key information
that would allow for good solutions. Still, in this case, there may be better and worse ways
collecting data. Optimizing experimental designs is the problem of choosing good passive
data collection strategies that lead to good learning outcomes. This topic came up in the
context planning algorithms as they also need to create value function estimates and for this
the data collection is better to be planned so that learning can succeed.

Oftentimes though, there is no control over how data is collected. Even worse, the method that
was used to collect data may be unknown. When this is the case, not much can be done, as the
following example shows:

Consider a bandit problem with two actions, denoted by  and a Bernoulli reward. Assume
that the reward distribution is Bernoulli with parameter  when  and Bernoulli with
parameter  when . Let  be a random variable, which is normally unavailable, but
which, together with the action  taken completely determines the reward. For example, 
could have a Bernoulli distribution with parameter , and if action  is chosen, the
reward  obtained is

This is indeed consistent with that  has Bernoulli  distribution when  and has
Bernoulli  distribution when . Assume now that during data collection the actions are
chosen based on :  with some . For concreteness, assume that during data
collection . Then, the action is random, yet, if the data is composed of pairs that have
the distribution shared by , or , clearly no method will be able to properly
estimate the mean of  or , let alone choosing the action that leads to a higher reward.
It is not hard to construct examples when the conditional mean of the observed data makes an
optimal action look worse than a suboptimal action.

This is an example where the correct model cannot be estimated because of the way data is
collected: The presence of the spurious correlation between a variable that controls outcomes
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but is not recorded can easily make the data collected useless, regardless of quantities. This is
an instance when the model is unidenti�able even with an in�nite amount of data.

When data collection is as arbitrary as in the above example, only a very careful study of the
domain can tell us whether the model is identi�able or not from the data. Note that this is an
activity that involves thinking about the structure of the problem at hand. The best is of course
if data collection can be in�uenced to avoid building up spurious correlations. When data is
collected in a causal way (following a policy, while recording both the decisions made and the
data is used to make those decisions), spurious correlations are avoided and the remaining
problem is to guarantee su�cient “coverage” to achieve statistical e�ciency.

The plug-in method estimates a model and uses the estimated model in place of the real one

to solve the problem at hand. Let  be a �nite MDP,  be an
estimate. The estimate can be produced in a number of ways, but from the perspective of the
result that comes, how the estimate is produced does not matter.

We consider the discounted case with a discount factor . We will use  to denote

the value function of a policy  in  (as opposed to , which is the value function of policy in 

), and similarly, we will use  to denote the optimal value function in . We analogously
use  and . Every other quantity that is usually associated with an MDP but which now is

associated with  receives a “hat”. For example, we use  for the policy evaluation operator

of memoryless policy  in  (either for the state values, or the action-values), while we use 

to denote the Bellman optimality operator underlying  (again, both for the state and action-
values).

We start with a generic result about contraction mappings:

Proposition (residual bound): Let  be a -contraction over a normed vector space 
 and let  be a �xed-point of . Then for any ,

Proof: By the triangle inequality,

How good is the plug-in method?

M = (S,A, P , r) M̂ = (S,A, P̂ , r̂)

0 ≤ γ < 1 v̂π

π M̂ vπ

M v̂∗ M̂

q̂π q̂∗

M̂ T̂π

π M̂ T̂

M̂

F : V → V γ

V x ∈ V F y ∈ V

∥x − y∥ ≤
∥Fy − y∥

1 − γ
. (1)

∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥
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Reordering and solving for  gives the result. 

An immediate implication is that good model estimates are guaranteed to give rise to
(relatively) good value estimates.

Proposition (value estimation error): Let  and assume that the rewards in 
are in the  interval. For any policy , the following holds:

Also,

Similarly,

and

Note that in general the value estimates are more sensitive to errors in the transition
probabilities then in the rewards. In particular, the transition errors can be magni�ed by a
factor as large as , while the reward errors are magni�ed by at most . Also note that
sometimes one can obtain tighter estimates with stopping earlier in the derivations of these
bounds. We will see some examples of how this can help later.

∥x − y∥ ≤ ∥Fx − Fy∥ + ∥Fy − y∥ ≤ γ∥x − y∥ + ∥Fy − y∥ .

|x − y| ■

Hγ = 1/(1 − γ) M

[0, 1] π

∥vπ − v̂π∥∞ ≤ Hγ (∥rπ − r̂π∥∞ + γ∥(Pπ − P̂π)vπ∥∞)

≤ Hγ (∥r − r̂∥∞ + γHγ∥P − P̂∥∞) .

(2)

(3)

∥v∗ − v̂∗∥∞ ≤ Hγ (∥r − r̂∥∞ + γ∥(P − P̂)v∗∥∞)

≤ Hγ (∥r − r̂∥∞ + γHγ∥P − P̂∥∞) .

(4)

(5)

∥qπ − q̂π∥∞ ≤ Hγ (∥r − r̂∥∞ + γ∥(P − P̂)vπ∥∞)

≤ Hγ (∥r − r̂∥∞ + γHγ∥P − P̂∥∞) .

(6)

(7)

∥q∗ − q̂∗∥∞ ≤ Hγ (∥r − r̂∥∞ + γ∥(P − P̂)v∗∥∞)

≤ Hγ (∥r − r̂∥∞ + γHγ∥P − P̂∥∞) .

(8)

(9)

Hγ Hγ
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Proof: To reduce clutter, we write  for . Let , where  is de�ned via 

. By the residual bound ,

The second inequality follows from separating  from the second term and bounding it using 

 and also using that , ,  and  and
�nally using that  is a nonexpansion. The remaining inequalities can be obtained in an
entirely analogous manner and hence their proof is omitted. 

The result just shown su�ces to quantify the size of the value errors. For quantifying the

policy optimization error that results from �nding an optimal (or near optimal) policy for ,
recall the Policy Error Bound from Lecture 6:

Lemma (Policy error bound - I.): Let  be a memoryless policy and choose a function 
 and . Then, the following hold:

This leads to the following result:

Theorem (bound on policy optimization error): Assume that the rewards both in  and 

belong to the  interval. Take any  and -optimal policy  in : . Then,
 is -optimal in  with  satisfying

Note that, up to a small constant factor, the optimization error is magni�ed by a factor of ,
the reward errors are magni�ed by a factor of , while the transition errors can get

∥ ⋅ ∥ ∥ ⋅ ∥∞ F = T̂π T̂π

T̂πv = r̂π + γP̂πv (1)

∥v̂π − vπ∥ ≤ Hγ∥T̂πvπ − vπ∥ = Hγ∥T̂πvπ − Tπvπ∥ ≤ Hγ (∥rπ − r̂π∥ + γ∥(Pπ − P̂π)vπ∥).

vπ

∥vπ∥ ≤ Hγ rπ = Mπr r̂π = Mπr̂ Pπ = MπP P̂π = MπP̂

Mπ

■

M̂

π

q : S × A → R ϵ ≥ 0

If  is -optimizing in the sense that  holds for every state 
 then  is  suboptimal: 

1 π ϵ ∑a π(a|s)q∗(s, a) ≥ v∗(s) − ϵ

s ∈ S π ϵ/(1 − γ) vπ ≥ v∗ − ϵ
1−γ

1 .

If  is greedy with respect to  then  is -optimizing with  and thus2 π q π 2ϵ ϵ = ∥q − q∗∥∞

vπ ≥ v∗ −
2∥q − q∗∥∞

1 − γ
1 .

M M̂

[0, 1] ε > 0 ε π M̂ v̂π ≥ v̂∗ − ε1

π δ M δ

δ ≤ (1 + 2γ)Hγε + 2H 2
γ {∥r − r̂∥∞ + γ∥(P − P̂)v∗∥∞} .

Hγ

H 2
γ

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/#lem:averror
https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/
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magni�ed by a factor of up to , depending on the magnitude of .

Proof: Let  be a policy as in the theorem statement. Our goal now is to use the �rst part of the
“Policy error bound”, i.e., that  is -optimizing with some .

On the one hand, we have

Let  be de�ned by . From the previous inequality, we know that .
We also have

Hence, by Part 1. of the “Policy Error Bound I.” lemma from above,

By the triangle inequality and the assumption on ,

By Eq. ,

The result is obtained by chaining the inequalities:

As usual, it is worthwhile to clean up the foundations by considering the tabular case. In this
case, the model can be estimared by using sample means. To allow for a uni�ed presentation,
let the data available be given in the form of triplets of the form  where

 and  given  and 
. Introducing the visit counts

H 3
γ v∗

π

π ε′ ε′ > 0

Mπq̂π = v̂π ≥ v̂∗ − ε1 = Mq̂∗ − ε1 ≥ Mq̂π − ε1 .

z Mπq̂π = Mq̂π + z ∥z∥∞ ≤ ε

Mπq∗ = Mπq̂π + Mπ(q∗ − q̂π)
= Mq̂π + Mπ(q∗ − q̂π) + z

= Mq∗ + Mq̂π − Mq∗ + Mπ(q∗ − q̂π) + z

≥ Mq∗ − (2∥q̂π − q∗∥ + ε)1
= v∗ − (2∥q̂π − q∗∥ + ε)1 .

vπ ≥ v∗ − Hγ(2∥q̂π − q∗∥ + ε)1 .

π

∥q̂π − q∗∥∞ ≤ ∥q̂π − q̂∗∥∞ + ∥q̂∗ − q∗∥∞ ≤ γε + ∥q̂∗ − q∗∥∞ .

(8)

∥q∗ − q̂∗∥∞ ≤ Hγ (∥r − r̂∥∞ + γ∥(P − P̂)v∗∥∞) .

∥v∗ − vπ∥∞ ≤ Hγ(2∥q̂π − q∗∥ + ε)

≤ Hγ {2γε + 2Hγ (∥r − r̂∥∞ + γ∥(P − P̂)v∗∥∞)+ ε} . ■

Model estimation error: Tabular case

Ei = (Si, Ai, Ri, Si+1)
i = 1, … , n Si+1 ∼ PAi

(Si) E1, … , Ei−1, Si, Ai

E[Ri|Si, Ai, E1, … , Ei−1] = rAi
(Si)
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and , provided that the visit count for  is positive, for the
transition probability estimates we have

and for the reward estimate we have

For ensuring that these are always de�ned, let  be the uniform distribution over the
states and let  when . From the perspective of the results to be
presented, the particular values chosen here do not matter.

Consider now the simple case when the above triplets are so that for each state-action pair 
,  for some deterministic counts . Say, one has access to a

generative model (simulator) and for each state-action pair the model is used to generate a
�xed number of independent transitions. In this case, one can use Hoe�ding’s inequality.

In particular, de�ning

provided that , Hoe�ding’s inequality gives that with probability , for any 
,

from which it follows that with probability ,

where . Plugging the obtained deviation bound into our policy
suboptimality bound, we get that with probability ,

N(s, a, s′) =
n

∑
i=1

I(Si = s, Ai = a, Si+1 = s′)

N(s, a) = ∑s′ N(s, a, s′) (s, a)

P̂a(s, s′) =
N(s, a, s′)

N(s, a)

r̂a(s) =
1

N(s, a)

n

∑
i=1

I(Si = s, Ai = a)Ri .

P̂a(s)
r̂a(s) = 0 N(s, a) = 0

(s, a) N(s, a) = n(s, a) (n(s, a))s,a

β(n, ζ) =
log( SA

ζ
)

2n

⎷Ri ∈ [0, 1] 1 − 2ζ

s, a

|r̂a(s) − ra(s)| ≤ β(n(s, a), ζ) ,

|⟨P̂a(s) − Pa(s), v∗⟩| ≤ Hγβ(n(s, a), ζ) ,

1 − 2ζ

∥r̂ − r∥∞ ≤ β(nmin, ζ) ,

∥(P̂ − P)v∗∥∞ ≤ Hγβ(nmin, ζ) ,

nmin = mins,a n(s, a)
1 − ζ

2
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One can alternatively write this in terms of the total number of observations, . The best case
is when  for all  pairs, in which case  and the above bound
gives

It follows that for any target suboptimality , as long as , the number of observations
satis�es

we are guaranteed that the optimal policy of the estimated model is at most  suboptimal.
As we shall see soon, the optimal dependence on the horizon  is cubic, unlike the
dependence shown here.

In applications it may happen that one can change the data collection strategy a limited
number of times. This creates a scenario that is in between batch and online learning. This
setting can be thought to be between batch and online learning. From the perspective of online
learning, this is learning in the presence of constraints on the data collection strategy. One
such widely studied constraint is the number of switches of the data collection strategy. As it
happens, only very few switches are necessary to get the full power of online learning and this
is not really speci�c to reinforcement learning but follows because the empirical distribution
converges are a slow rate to the true distribution. For parametric problems, the rate is 

 where  is the number of observations. Thus, to change “accuracy” of the estimates
of any quantity in a signi�cant fashion, the sample size should increase by much, which
means, few changes to the data collection are su�cient. In other words, there is no reason to
change the data collection strategy before one obtains su�cient new evidence that can help
with deciding in what way the data collection strategy should be changed. This usually means
that with only logarithmically many changes in the total sample size, one gets the full power
of online methods.

δ ≤ (1 + 2γ)Hγε + 2H 2
γ (1 + γHγ)β(nmin, ζ) .

n

n(s, a) = nmin (s, a) n = SAnmin

δ ≤ (1 + 2γ)Hγε + 2H 2
γ (1 + γHγ) SA

log( SA
ζ
)

2n
.

⎷δtrg n

n ≥
8H 6

γ SA log( SA
ζ
)

δ2
trg

,

δtrg

Hγ

Notes

Between batch and online learning

O(1/√n) n

Batch RL with no access to state information
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For simplicity, we stated the batch learning problem in a way that assumes that the states in
the transitions are observed. This may be seen as problematic. One “escape” is to treat the
whole history as the state: Indeed, in a causal, controlled stochastic process, the history can
always be used as a Markov state. Because of this, the assumption that the state is observed is
not restrictive, though the state space becomes exponential in the length of the trajectories.
This reduces to the problem to learning in large state-space MDPs. Of course, even lower
bounds for planning tell us that in lack of extra structure, all algorithms need a sample size
proportional to the size of the state-action space, hence, one needs to add extra structure to
deal with this case, such as function approximation. It also holds that if one uses, say, linear
function approximation, then only the features of the states (or state-action pairs) need to be
recorded in the data.

Whether a causal e�ect can be learned from a batch of data (to be more precise, from data
drawn from a speci�c distribution) is the topic of causal reasoning. In batch RL, the “e�ect”
is the value of a policy, which, in the language of causal reasoning, would be called a
multistage treatment. As the example in the text shows, in batch RL, just because of our
assumptions on how the data is collected, the identi�ability problem is just “assumed away”.
When the assumption on how the data is generated/collected is not met, the tools of causal
reasoning can potentially be still used. It is important to emphasize though that there is no
causality without assuming causality. The statements that causal reasoning can make are
conditional on the data sampling assumptions met. Even “causal discovery” is contingent on
these assumptions. However, with care, oftentimes it is possible to argue for that some
suitable assumptions are met (e.g., arguing based on what information is available at what
time in a process), in which case, the nontrivial tools of causal reasoning may be very useful.

Nevertheless, especially in engineered systems, our standard data collection assumptions are
reasonable and can be arranged for, though in large engineered systems, mistakes, such as not
logging critical quantities may happen. One example of this is an action to be taken is
overriden by some part of a system, which will, say, later be turned o�. Clearly, if no one logs
the actual actions taken, the e�ects of actions become unidenti�able. As we shall see later,
batch RL and the causality literature share some of their vocabulary, such as “instrumental
variables”, “propensity scores”, etc.

Plug-in generally means that a model is estimated and then is used as if it was the “true”
model. In control, when a controller (policy) is derived with this approach, this is known as the
“certainty equivalence” controller. The “certainty equivalence principle” states that the
“random” errors can be neglected. The principle originates from the observation that in
various scenarios, the optimal controller (optimal policy) has a special form that con�rms this

Causal reasoning and batch RL

Plug-in or certainty equivalence
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principle. In particular, this was �rst observed in the control of linear quadratic Gaussian
control, where the optimal controller can be obtained by solving for the optimal control under
perfect state information then substituting optimal state prediction for the the perfect state
information. This strict optimality result is quite brittle. As we shall see soon, from the
perspective of minimax optimality, certainty equivalent policies are not a bad choice.

In the early RL literature, online learning was dominant. When people tried to apply RL to
various “industrial”/”applied” settings, they were forced to think about how to learn from
data collected before learning starts. One of the �rst papers to push this agenda is the
following one:

Tree-Based Batch Mode Reinforcement Learning Damien Ernst, Pierre Geurts, Louis
Wehenkel; 6(18):503−556, 2005.

Earlier mentions of “batch-mode RL” include

E�cient Value Function Approximation Using Regression Trees (1999) by Xin Wang ,
Thomas G. Dietterich, Proceedings of the IJCAI Workshop on Statistical Machine Learning
for Large-Scale Optimization. pdf

Even in online learning, e�cient learning may force one to save all the data to be used for
learning. The so-called LSTD algorithm, and later the LSPI algorithm, were explicitly
proposed to address this challenge:

J. A. Boyan. Technical update: least-squares temporal di�erence learning. Machine
Learning, 49 (2-3):233–246, 2002.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning
Research, 4:1107–1149, 2003a.

O�-policy learning refers to the case when an algorithm needs to produce value function (or
action-value function) estimates for some policy and the data available is not generated by the
policy to be evaluated. In all the above examples, we are thus in the setting of o�-policy
learning. The policy evaluation problem, accordingly, is often called the o�-policy policy
evaluation (OPPE) problem, while the problem of �nding a good policy is called the o�-policy
policy optimization (OPPO) problem.

For a review of the literature of around 2012, consult the following paper:

S. Lange, T. Gabel, M. Riedmiller (2012) Batch Reinforcement Learning. In: M. Wiering, M.
van Otterlo (eds) Reinforcement Learning. Adaptation, Learning, and Optimization, vol 12.
Springer, Berlin, Heidelberg pdf
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