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RL Theory

Batch RL / 18. Sample complexity in �nite MDPs

Let  be the set of state-action pairs. A -design assigns a count to every
member of , that is, to every state-action pair. In the last lecture we saw that

samples are su�cient to obtain a -suboptimal policy with high probability provided
that data is generated from a -design that assigns the same count to each state-action
pair and to get a policy one uses the straightforward plug-in approach that estimates the
rewards and transitions using empirical estimates and uses the policy that is optimal with
respect to the estimated model. Above, the dependence on the number of state-action pairs
is optimal, but the dependence on the horizon  is suboptimal. In the �rst half of

this lecture, I sketch how the analysis presented in the previous lecture can be improved to
get the optimal cubic dependence, together with a sketch that shows that the cubic
dependence is indeed optimal.

In the second half of the lecture, we consider policy-based data collection, or experimental
designs, where the goal is to �nd a near optimal policy from an initial state, where the data
consists of trajectories obtained by rolling out the data-collection policy from the said
initial state. Here, we will show a lower bound that shows that the sample complexity in
this case is at least as large , which shows that there exist an exponential
separation between both -designs and policy-based designs, and also between passive
and active learning. To see the latter, note that in the presence of a simulator, with only a
reset to an initial state, one can use approximate policy iteration with rollouts, or Politex
with rollouts, to get a policy that is near-optimal when started from the initial state that
one can reset to but with polynomially many samples in  and  (cf. Lecture 8 and
Lecture 14).

The improvement in the analysis of the plug-in method comes from two sources:
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In this section, we focus on the �rst aspect. The second aspect will be considered in the next
section.

We continue to use the same notation as in the previous lecture. In particular,  denotes

the “true” MDP,  denotes the estimated MDP and we put  on quantities related to this
second MDP. We further let  be one of the memoryless optimal policies of . For

simplicity, we will assume that the reward function in  is the same as in : As we have
seen, the higher order term in our error bound came from errors in the transition
probability; the simplifying assumption allows us to focus on reducing this term while
minimizing clutter. The arguments are easy to extend to the case when .

Let  be a policy whose suboptimality in  we want to bound. The idea is to bound the

suboptimality of  by its suboptimality in  and also by how much value functions for

�xed policies di�er when we switch from  to . In particular, we have

where  denotes an optimal policy in  and the inequality holds because .
The term marked as “opt. error” is the optimization error that arises when  is not (quite)

optimal in . This term is controlled by the choice of . For simplicity, assume for now

that  is an optimal policy in , so that we can drop this term. We further assume that  is

a deterministic optimal policy of .

It remains to bound the �rst and last terms. Both of these terms have the form , i.e.,
the di�erence between the value functions of the same policy  in the two MDPs (here,  is
either  or ). This di�erence, similar to the value di�erence identity, can be expressed as

a function of the di�erence , as shown in the next result:

Lemma (value di�erence from transition di�erences): Let  and  be two MDPs sharing
the same state-action space, rewards, but di�ering in their transition probabilities. Let  be

Using a version of the value-di�erence identity and avoiding the use of the policy error
bound

1

Using Bernstein’s inequality in place of Hoe�ding’s inequality2

M

M̂ ⋅̂
π∗ M

M̂ M

r̂ ≠ r

π̂ M

π̂ M̂

P P̂

v∗ − vπ̂ = v∗ − v̂∗ + v̂∗ − vπ̂

≤ vπ
∗

− v̂π
∗

+ v̂∗ − v̂π̂

opt. error

+ v̂π̂ − vπ̂ , (1)

π̂∗ M̂ v̂∗ = v̂π̂
∗

≥ v̂π
∗

π̂

M̂ π̂

π̂ M̂ π̂

M̂

vπ − v̂π

π π

π∗ π̂

P − P̂

M M̂

π

https://rltheory.github.io/lecture-notes/batch-rl/lec17/


5/16/22, 11:22 PM 18. Sample complexity in finite MDPs - RL Theory

https://rltheory.github.io/lecture-notes/batch-rl/lec18/ 3/16

a memoryless policy over the shared state-action space of the two MDPs. Then, the
following identities holds:

Proof: We only need to prove  since  follows from this identity by symmetry.
Concerning the proof of , we start with the closed form expression for value functions.
From this we get

Inspired by the elementary identity that states that , we calculate

�nishing the proof. 

Note that in , the empirical transition kernel  appears through its inverse by left-

multiplying , while in , through , it appears by right-multiplying the
same deviation term. In the remainder of this section we use , but in the next section we
will use .

Combining  with our previous inequality, we immediately get that

Assume that  is obtained by sampling  next states at each state-action pair. By
Hoe�ding’s inequality and a union bound over the state-action pairs, for any �xed 

 and , with probability , we have
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and in particular with , we have

Controlling the second term in  requires more care as  is random and depends on the

same data that is used to generate . To deal with this term, we use another union bound.

Let  be the set of all possible value functions that we can obtain by
considering deterministic policies. Since by construction  is also a deterministic policy, 

. Hence,

and thus by a union bound over the  functions  in , we get that with probability 
,

Putting things together, we see that

which reduces the dependence on  of the sample size bound from  to . As we shall
see soon, this is not the best possible dependence on . This method also falls short of
giving the best possible dependence on the number of states. In particular, inverting the
above bound, we see that with this method we can only guarantee a -optimal policy if the
total number of samples,  is at least

while below we will see that the optimal bound is .
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Improved analysis of the plug-in method: Second attempt
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There are two further ideas that help one achieve the sample complexity which will be seen
to be optimal. One is to use what is known as Bernstein’s inequality in place of Hoe�ding’s
inequality, together with a clever observation on the “total variance” and the second is to
improve the covering argument. The �rst idea helps with improving the horizon
dependence, the second helps with improving the dependence on the number of states. In
this lecture, we will only cover the �rst idea and sketch the second.

Bernstein’s inequality is a classic result in probability theory:

Theorem (Bernstein’s inequality): Let  and let  be an i.i.d.

sequence and de�ne  as the sample mean of this sequence: .
Then, for any , with probability at least ,

where .

To set expectations, it will be useful to compare this bound to Hoe�ding’s inequality. In
particular, in the setting of the lemma Hoe�ding’s inequality also applies and gives

Since in our case  (the value functions take values in the  interval), using 
 (which would give rise to the optimal sample size), Hoe�ding’s inequality

gives a bound of size  (cf. ). This is a problem: Ideally, we would
like to see  here, because inequality \cref{eq:vdeb} introduces an additional  factor.

We immediately see that for Bernstein’s inequality to make a di�erence, just focusing on

the �rst term in Bernstein’s inequality, we need . In fact, since 
, we see that this is also su�cient to take o� the  factor from

the sample complexity bound. It thus remains to be seen whether the variance could indeed
be this small.

To �nd this out, �x a state-action pair  and let  be an i.i.d.

sequence of next states at . Then,  has the
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same distribution as

De�ning  and , we see that it is  that appears

when Bernstein’s inequality is used to bound . It remains to be seen how
large values  can take on. Sadly, one can quickly discover that the range of 
is sometimes also as large as . Is Bernstein’s inequality a dead-end then?

Of course, it is not, otherwise we would not have introduced it. In particular, a better bound
is possible by directly bounding the maximum-norm of

which is close to the actual term that we need to bound. Indeed, by \cref{ } from the
value di�erence lemma,  and thus

The second term on the right-hand side is of order  (since  appears

there and both  and  have been seen to be of order ). As we expect 
 to be of order , we will focus on this term.

For simplicity, take now the case when  is a �xed, nonrandom policy (we need to bounded 
 for  and also for , the second of which is random). In this case, by a

union bound and Bernstein’s inequality, with probability ,

Multiplying both sides by , using a triangle inequality and the special
properties of , we get

The following beautiful result, whose proof is omitted, gives an  bound on the �rst
term appearing on the right-hand side of the above display:
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Lemma (total discounted variance bound): For any discounted MDP  and policy  in , 

Since the bound that we get from here is  and not , “we are saved”. Indeed,
plugging this into  gives

which holds with probability . Choosing , we see that both terms are 
. It remains to show that a similar result holds for . If we use the union bound that we
used before, we introduce an extra  factor. Avoiding this extra  factor requires new ideas,
but with these we get the following result:

Theorem (upper bound for -designs): Let  be an optimal policy in the MDP whose

transition kernel is , a kernel estimated based on a sample of  next states from each

state-action pair. Letting  and , if

then with probability ,  is -optimal, where  is a universal constant. In short, for

any  there exist an algorithm that produces a -optimal policy from a total
number of

samples under a uniform -design.

It remains to be seen whether the same sample complexity holds for larger values of , e.g.,
for .
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A natural question is whether we can improve on the  upper bound, or whether
this can be matched by a lower bound. For this, we have the following result:

Theorem (lower bound for -designs): Any algorithm that uses -designs and is
guaranteed to produce a -optimal policy needs at least  samples.

Proof (sketch): As we have seen in the proof of the upper bound, the key to achieve the

cubic dependence was that the sample mean  of  i.i.d. bounded random variables is

within a distance of  to the true mean. In a way, the converse of this is also true: It
is “quite likely” that the distance between the sample and true mean is this large. This is
not too hard to see for speci�c distributions, such as when the  are normally distributed,
or when  are Bernoulli distributed (in a way, this is the essence of the central-limit
theorem, though the central-limit theorem is restricted for ).

So how can we use this to establish the lower bound? In an MDP the randomness comes
either from the rewards or the transitions. But in the upper bound above, the rewards were
given, so the only source of randomness is transitions. Also, the cubic dependence must
hold even if the number of states is a constant. What all this implies is that somehow
learning the transition structure with a few states is what makes the sample complexity
large as  (or ). Clearly, this can only happen if
the (small) MDP has self-loops. The smallest example of an
MDP with a self-loop is if one has an action and state such
that taking that action from that state leads to same action
with some positive probability, while with the
complementary probability the next state is some other
state. This leads to the structure shown on the �gure on the
right.

As can be seen, there are two states. The transition at the �rst state, call it state , is
stochastic and leads to itself with probability , while it leads to state  with probability 

. The reward associated with both transitions is . The second state, call it state , has
a self-loop. The reward associated with this transition is zero.

There are no actions (alternatively, there is only one action at both states). However, if we
can show that in the lack of knowledge of , estimating the value of state  up to a precision
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of  takes  samples, the sample complexity result will follow. In particular, if we
repeat the transition structure  times (sharing the same two states), one can make the
value of  for one of this actions ever slightly so di�erent from the others so that its value
di�ers by (say)  from the others. Then, by construction, a learner who uses fewer than 

 total samples at state  will not be able to reliably tell the di�erence between
the value of the special action and the other actions, hence, will not be to choose the right
action and will thus be unable to produce a -optimal policy. To also add the state
dependence, the structure can then be repeated  times.

So it remains to be seen whether the said sample complexity result holds for estimating the
value of state . Rather than giving a formal proof, we give a quick heuristic argument,
hoping that readers will �nd this more intuitive.

The starting point for this heuristic argument is the general observation that sample
complexity questions concerning estimation problems are essentially questions about
the sensitivity of the quantity to be estimated to the unknown parameters. Here,
sensitivity means how much the quantity changes if we change the underlying parameter.
This sensitivity for small deviations and a single parameter is exactly the derivative of the
quantity of interest with respect to the parameter.

In our special case, the value of state , call it  (also showing the dependence on ) is
the quantity to be estimated. Since the value of state  is zero,  must satisfy 

. Solving this we get

The derivative of this with respect to  is

To get a -accurate estimate of , we need

Inverting for , we get that
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It remains to choose  as a function of  to show that the above can be lower bounded by 
. If we choose , we have 

 and hence

Putting things together �nishes the proof sketch. 

A homework problem is included which explains how to �ll in the gaps in the last section of
the proof, while pointers to the literature are given that one can use to �gure out how to �ll
the remaining gaps.

When the data is generated by following some policy, we talk about policy based designs.
Here, the design decision is what policy to use to generate the data. The sample complexity
of learning with policy based designs is the number of observations necessary and
su�cient for some algorithm to �gure out a policy of a �xed target suboptimality, from a
�xed initial state, based on data generated by following a policy where the MDP where the
policy is followed can be any of the MDPs within the class.

Three questions arise then. (i) The �rst question (the design question) is what policy to
follow during data collection. If the policy can use the full history, the problem is not much
di�erent than online learning, which we will consider later. From this perspective the
interesting (and perhaps more realistic) case is when the data-collection policy is
memoryless and is �xed before the data collection begins. Hence, in what follows, we will
restrict our attention to this case. (ii) The second question is what algorithm to use to
compute the policy given the data generated. (iii) The �nal, third question is how large is
the sample complexity of learning with policy induced data for some �xed MDP class.

Learning and estimating a good policy from policy induced data is much closer to reality
than the same problem from -designs. Practical problems, such as problems in health
care, robotics, etc., are so that we can obtain data generated by following some �xed policy,
while it is usually not possible to demand obtaining sample transitions from arbitrary
state-action pairs.
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For simplicity, let us still consider the case of �nite state-action MDPs, but to further
simplify matters, let us now consider (homogenous kernel) �nite horizon problems with a
horizon . As it turns out, the plug-in algorithm of the previous section is still a good
algorithm in the sense that it achieves the optimal (minimax) sample complexity. However,
the minimax sample complexity is much higher than it is for -designs:

Theorem (sample complexity lower bound with policy induced data): For any , 
, any (memoryless) data collection policy  over the state-action spaces  and ,

for any  and any algorithm  that maps data that has  transitions to
a policy there exist an MDP  with state space  and action space  such that with
constant probability, the policy  produced by  is not -optimal with respect to the -
horizon total reward criterion when the algorithm is fed with data by following  in .

Proof (sketch): Without loss of generality assume that ; if there are more
states, just ignore them, while if there are fewer states then just decrease . Consider an
MDP where states  are organized in a chain under the e�ect of some actions, and
state  is an absorbing state with zero associated reward. For , let action 
be the one that gets to be chosen
with the smallest probability in
state  under the data generating
policy : .
We choose action  as the action
that moves the state from  to 
, deterministically. Any other action leads to state , deterministically. All rewards are
zero, except when transitioning from state  to state  under action , where the
reward is stochastic with a normal distribution with mean  either  or  and a
variance of one. The structure of the MDP is shown on the �gure in the left-hand side.

Now, because of the choice of , . Hence, the probability that starting from
state , following policy  for  steps will generate the sequence of states 

, including the critical transition from state  to state , is at most
. This transition is critical in the sense is that only data from this transition decides

whether in state  it is worth taking action  or not. In particular, if , taking  is
a poor choice, while if , taking  is the optimal choice. The expected number of
times this critical transition is seen is at most . With  observations, the
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value of  will be estimated up to an accuracy of . When this is smaller than ,
with constant probability, the sign of  cannot be decided and thus with constant
probability, any algorithm will fail to identify whether  should be taken in state  or not
(with a probability, of say, at least ). Plugging in the expected value of , we get that

the condition on  is that  where  is some universal constant.
Equivalently, the condition is that , which is the statement to be proven. 

The lower bound construction suggests that the best policy to be used in the lack of extra
information about the MDPs is the uniform policy. Note that a similar statement holds for
the discounted setting. The contrast between this lower bound and the polynomial upper
bound of the previous section are in strike contrast: Data obtained from following policies
can be very poor. One may wonder whether the situation can be improved assuming that
the data is obtained from a good policy (say,  optimal policy), but the proof of the
previous result in fact shows that this is not the case.

While the exponential lower bound on the sample complexity of learning from policy
induced data is already bad enough, one may worry that the situation could be even worse.
Could it happen that even the best algorithm needs double exponential number of samples?
Or even in�nite? A moment of thought shows that the latter is the case is switch to the
average reward setting: This is because in the average reward setting the value of an action
can depend on the value of a state whose hitting probability within an arbitrary �xed
number of transitions is positive, just arbitrarily low. Can something similar happen
perhaps in the �nite-horizon setting, or the discounted setting? As it turns out, the answer
is no. The previous lower bound gives the correct order of the sample complexity of �nding
a near-optimal policy using policy induced data:

Theorem (sample complexity upper bound with policy induced data): With 
 episodes of length  collected with the uniform policy

from a �xed initial distribution , with a constant probability, the plug-in algorithm
produces a policy that is -optimal when started from .

Proof (sketch): For simplicity assume that the reward function is known. Let  be the
logging policy, which is uniform. Again, assume that the plug-in algorithm produces a
deterministic policy.

μ O(√1/m) 2δ
μ

a1 1
1/2 m

n √cAH/n ≤ 2δ c > 0
n ≥ cAH/(4δ2)

■

2δ

m = Ω(S 3H 4Amin(H,S−1)+2/δ2) H

μ

δ μ

πlog
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The proof is based on the decomposition of the suboptimality gap of the policy  produced
that was used before. In particular, by ,

where as before,  denotes the value function of policy  in the empirically estimated
MDP. Further, we also used  as a shorthand for , where 

,

One then needs a counterpart of the value di�erence lemma. In this case, the following
version is convenient: For any policy ,

and

where  and  are  matrices. These can be proved by using the Bellman
equation for the action-value functions and a simple recursion and noting that 
.

Next, we can observe that  where  is a distribution over  which
assigns probability  to . This, combined with the value
di�erence identity makes  appear in the bounds. This is the probability
distribution over the state-action space after using  for  steps when the initial

distribution is . Now, as this is multiplied by , and for a given state-action pair 

, , using that 

 which holds because , we see that it su�ces if the ratios 

 (or their square root) are controlled. Above,  is the
number of times  is seen in the data, and  is the number of times  is
seen in the data in the th transition. Here we should also mention that we only control
these terms for state-action pairs 

 that satisfy  as the total contribution of the other state-action pairs
is , i.e., small. For these state action pairs,  is also positive and with high
probability, the counts are also positive.

π̂

(1)

v∗(μ) − vπ̂(μ) ≤ vπ
∗

(μ) − v̂π
∗

(μ) + v̂π̂(μ) − vπ̂(μ) , (7)

v̂π π

v(μ) ∑s μ(s)v(s)(= ⟨μ, v⟩)
v : [S] → R

π

qπH − q̂πH =
H−1

∑
h=0

(Pπ)h(P − P̂)v̂πH−h−1 ,

q̂πH − qπH =
H−1

∑
h=0

(P̂π)h(P̂ − P)vπH−h−1 ,

Pπ P̂π SA × SA

q0 = r = q̂0

vπ(μ) = ⟨μπ, qπ⟩ μπ [S] × [A]
μ(s)π(a|s) (s, a) ∈ [S] × [A]

νπ
h := μπ(Pπ)h

π h

μπ P − P̂

(s, a) ∥P(s, a) − P̂(s, a)∥1 ≲ 1/√N(s, a) ≤ 1/√Nh(s, a) ≈ 1/√mν
πlog

h

νπ
h (s, a) ≤ √νπ

h (s, a) 0 ≤ νπ
h ≤ 1

ρπh(s, a) := νπ
h (s, a)/ν

πlog

h (s, a) N(s, a)
(s, a) Nh(s, a) (s, a)

h

(s, a) νπ
h

(s, a) ≳ 1/m
O(1/m) ν

πlog

h
(s, a)
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Next, one can show that

This is done in two steps. First, show that . This follows from
the law of total probability: Write  as the sum of probabilities of all trajectories that
end with  after  transitions. Next, for a given trajectory, replace each occurrence of 
with  at the expense of introducing a factor of  (this comes from 

). The next step is to show that  also
holds. This inequality follows by observing that the uniform policy and the uniform mixture
of all deterministic (memoryless) policies induce the same distribution over the
trajectories. Then by letting  denote the set of all deterministic policies, using that 

, we have , where we used that 
.

Putting things together, applying a union bound when it comes to argue for  and
collecting terms gives the result. 

Finding a good policy from a sample drawn from a -design and �nding a good policy from
a sample given a generative model, or random access simulator of the MDP (which we
extensively studied in previous lectures on planning) are almost the same. The random
access model however allows the learner to determine which state-action pair the next
transition data should be generated at in reaction to the sample collected in a sequential
fashion. Thus, computing a good policy with a random access simulator gives more power
to the “learner” (or planner). The lower bound presented for -design can in fact be shown
to hold for the generative setting, as well (the proof in the paper cited below goes through
in this case with no changes). This shows that in the tabular case, adaptive random access
to the simulator provides no bene�ts to the planner over non-adaptive random access.

The result of the  sample complexity bound to �nd a -optimal policy with
uniform -design using the plug-in method is from the following paper:

Agarwal, Alekh, Sham Kakade, and Lin F. Yang. 2020. “Model-Based Reinforcement
Learning with a Generative Model Is Minimax Optimal.” COLT, 67–83. arXiv link

This paper also contains a number of pointers to the literature. Interestingly, earlier
approaches often used more complicated approaches which directly worked with value
functions rather than the more natural plug-in approach. The problem of whether the
plug-in method is minimax optimal in  design for �nite-horizon problem is open.

ρπh(s, a) ≤ Amin(h+1,S) .

νπ
h (s, a) ≤ Ah+1ν

πlog

h (s, a)
νπ
h

(s, a)
(s, a) h π

πlog Ah+1

π(a′|s′) ≤ 1 ≤ Aπlog(a′|s′) νπ
h (s, a) ≤ ASν

πlog

h (s, a)

DET
π ∈ DET νπ

h (s, a) ≤ ∑π′∈DET νπ′

h (s, a) = ASν
πlog

h (s, a)
|DET| = AS

π̂

■
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The result which was included in this lecture limits the range of  to . Equivalently, the
result is not applicable for a small number of observations  per state-action pair. This
limitation has been removed in a follow-up to this work:

Li, Gen, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. 2020. “Breaking the
Sample Size Barrier in Model-Based Reinforcement Learning with a Generative Model.”
NeurIPS

This paper still uses the plug-in method, but adds random noise to the observed rewards to
help with tie-breaking.

The variance bound, which is the key to achieving the cubic dependence on the horizon is
from the following paper:

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax PAC bounds
on the sample complexity of reinforcement learning with a generative model.
Machine learning, 91(3):325–349, 2013.

This paper also has the essential ideas for the matching lower bound. The 2020 paper is
notable for some novel proof techniques, which were developed to bound the error terms
whose control is not included in this lecture.

The results for learning with policy-induced data are from

Xiao, Chenjun, Ilbin Lee, Bo Dai, Dale Schuurmans, and Csaba Szepesvari. 2021. “On the
Sample Complexity of Batch Reinforcement Learning with Policy-Induced Data.” arXiv

which also has the details that were omitted in these notes. This paper also gives a modern
proof for the -design sample complexity lower bound.

One may ask whether the results for -design that show cubic dependence on the horizon 
 extend to the case of large MDPs when value function approximation is used. In a special

case, this has been positively resolved in the following paper:

Yang, Lin F., and Mengdi Wang. 2019. “Sample-Optimal Parametric Q-Learning Using
Linearly Additive Features.” ICML arXiv version

which uses an approach similar to Politex in a more restricted setting, but achieves an
optimal dependence on .
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