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RL Theory

Online RL / 22. Introduction

Online learning in reinforcement learning refers to the idea that a learner is placed in an
(initially) unknown MDP. By interacting with the MDP, the learner collects data about the
unknown transition and reward function. The learner’s goal is to collect as much reward
as possible, or output a near-optimal policy. The di�erence to planning is that the learner
does not have access to the true MDP. Unlike in batch RL, the learner gets to decide what
actions to play. Importantly, this means the learner’s action a�ect the data that is
available to the learner (sometimes refered to as “closed loop”).

The fact that the learner needs to create its own data leads to an important decision:
Should the learner sacri�ce reward to collect more data that will improve decision making
in the future? Or should it act according to what seems currently best? Clearly, too much
exploration will be costly if the learner chooses actions with low reward too often. On the
other hand, playing actions that appear optimal with limited data comes at the risk of
missing out on even better rewards. In the literature, this is commonly known as
exploration-exploitation dilemma.

The exploration-exploitation dilemma is not speci�c to the MDP setting. It already arises
in the simpler (multi-armed) bandit setting (i.e. an MDP with only one state and
stochastic reward).

In the following, we focus on �nite-horizon episodic (undiscounted) MDPs 
. The learner interacts with the MDP for  episodes of length . At

the beginning of each episode , an initial state is sampled from the initial
distribution . The data collected during the  episode is

where  is the action chosen by the learner at step ,  is the next state

and  is the (possibly stochastic) reward.

This model contains some important settings as a special case. Most notably,

 recovers the contextual bandit setting, where the “context”  is sampled from
the distribution 
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 and  is the �nite multi-armed bandit setting.

The goal of the learner is to collect as much reward as possible. We denote 
 as the reward collected by the learner in episode . The total reward is 

. For the analysis it will be useful to introduce a normalization: Instead of directly
arguing about the total reward, we compare the learner to the value  of the best
policy in the MDP. This leads to the notation of regret de�ned as follows:

A learner has sublinear expected regret if  as . Sublinear regret means
that the average reward of the learner approaches the optimal value  as the number
of episodes increases. Certainly that is a desirable property!

Before we go on to construct learners with small regret, we brie�y note that there are also
other objectives. The most common alternative is PAC - which stands for probably
approximately correct. A learner is said to be -PAC if upon termination in episode ,
it outputs a policy such that  with probability at least . We have
discussed PAC bounds already in the context of planning.

The di�erence to bounding regret is that in the �rst  episodes, the learner does not
‘pay’ for choosing suboptimal actions. This is sometimes called a pure exploration
problem. Note that a learner that achieves sublinear regret can be converted into a PAC
learner (discussed in the notes). However, this may lead to a suboptimal (large)  in the
PAC framework.

There exist many ideas on how to design algorithms with small regret. We �rst note that a
“greedy” agent can easily fail: Following the best actions according to some empirical
estimate can easily get you trapped in a supoptimal policy (think of some examples where
this can happen!).

A simple remedy is to add a small amount of “forced” exploration: With (small)
probability , we choose an action uniformly at random. Thereby we eventually collect
samples from all actions to improve our estimates. With probabilty  we follow the
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“greedy” choice, that is the action that appears best under our current estimates. This
gives raise to the name -greedy.

It is often possible to show that -greedy converges. By carefully choosing the exploration
probability , we may show that in �nite MDPs, the regret is at most . As we
will discuss later, there are multiple algorithms that achieve a regret of only .
Thus, -greedy is not the best algorithm to minimize regret.

Not unexpectedly, this type of exploration can be quite sub-optimal. It is easy to construct
examples, where -greedy takes exponential time (in the number of states) to reach an
optimal policy. Can you �nd an example (Hint: construct the MDP such that each time the
agent explores a suboptimal action, the agent is reset to the starting state)?

On the upside, -greedy is very simple and can easily used in more complex scenarios. In
fact, it is a popular choice when using neural network function approximations, where
theoretically grounded exploration schemes are much harder to obtain.

A popular technique to construct regret minimizing algorithms is based on optimism in
the face of uncertainty. To formally de�ne the idea, let  be the set of possible
environments (e.g. �nite MDPs). We make the realizability assumption that the true
environment  is in this set. After obtaining data in rounds , the learner
uses the observations to compute a set of plausible models . The plausible model
set is such that it contains the true model with high probabilty. Although this is not
always required, it is useful to think of a decreasing sequence of sets 

. This simply means that as more data arrives, the learner is able
to exclude models that are statistically unlikely to produce the observation data.

The optimism principle is to act according to the policy that achieves the highest reward
among all plausible models, i.e. 

At this point it not be clear why this leads to an e�cient learning algorithm (with small
regret). The idea is that the learner systematically obtains data about the environment.
For example, if data contradicts the optimistic model , then 

 is excluded from the set of plausible models in the future. Consequently, the
learner chooses a di�erent policy in the next round.

On the other hand, the learner ensures that  with high probability. In this case, it
is often possible to show that the gap  is small (more speci�cally, behaves
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like a statistical estimation error of order  with a leading constant that depends on
the “size” of ).

One should also ask if the optimization problem  can be solved e�ciently. This is far
from always the case. Often one needs to rely on heuristics to implement the optimistic
policy, or use other exploration techniques such as Thompson sampling (see below).

How much regret the learner has of course depends on the concrete setting at hand. In the
next lecture we will see how we can make use of optimism to design (and analyize) an
online learning algorithm for �nite MDPs. The literature has produced a large amount of
papers with algorithms that use the optimism principle in many settings. This however
does not mean that optimism is a universal tool. More recent literature has also pointed
out limitations of the optimsm principle, and in lieu proposed other design ideas.

Some other notable exploration strategies are:

Phased-Elimination and Experimental Design

Thompson Sampling

Information-Directed Sampling (IDS) and Estimation-To-Decisions (E2D)

The paper showing the details behind how to convert between Regret and PAC bounds.

Dann, C., Lattimore, T., & Brunskill, E. (2017). Unifying PAC and regret: Uniform PAC
bounds for episodic reinforcement learning. Advances in Neural Information
Processing Systems, 30. [link]

Copyright © 2020 RL Theory.

O(t−1/2)

M

(1)

Notes

Other Exploration Techniques

•

•

•

References

•

https://arxiv.org/abs/1703.07710

