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RL Theory

Online RL / 23. Tabular MDPs

In this lecture we will analize an online learning algorithm for the �nite-horizon episodic
MDP setting. Let  be an MDP with �nite state and action spaces  and 

, unknown transition matrix , known reward function , an initial state
distribution , and length of each episode . The star-superscript in  is used to
distinquish the true environment from other (e.g. estimated) environments that occur in
the algorithm and the analysis. The assumption that the reward function  is known is for
simplicity. In fact, most of the hardness (in terms of sample complexity and designing the
algorithm) comes from unknown transition probabilities.

We will focus on the �nite-horizon setting where the learner interacts with the MDP over 
 episodes of length . Most, but not all ideas translate to the in�nite-

horizon discounted or average reward settings.

Recall that the regret is de�ned as follows:

where .

The UCRL algorithm implements the optimism princple. For this we need to de�ne a set of
plausible models. First, we de�ne the maximum likelihood estimates using data from
rounds :

The de�nition makes use of the notation , and empirical counts:

23. Tabular MDPs
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De�ne the con�dence set

where  is a function that we will choose shortly. Our goal of choosing  is to
ensure that

The second point will appear formually in the proof, however note that from a statistical
perspective, we want the con�dence set to be as e�cient as possible.

With the con�dence set, we can now introduce the UCRL algorithm:

UCRL (Upper con�dence reinforcement learning):

In episodes ,

Note that we omitted the rewards from the observation data. Since we made the
assumption that the reward vector  is known, we can always recompute the rewards
from the state and action sequence.

For now we we also glance over the point of how to compute the optimistic policy 
e�cently, but we will get back to this point later.

Lemma (L1-con�dence set): Let  and de�ne the con�dence

sets
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(k)
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 is “not too large”2 Ck,δ

k = 1, … , K
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Step 1: De�ning the con�dence set

βδ(u) = 2√ S log(2)+log(u(u+1)SA/δ)
2u

Ck,δ = {Pa(s) : ∀s, a ∥P
(k)
a (s) − Pa(s)∥1 ≤ βδ(Nk(s, a))}
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Then, with probability at least ,

Proof: Let  be �xed and denote by  the next state observed upon visiting  the 
 time. Assume that  was visited in total  times. Then .

The Markov property implies that  is i.i.d. Note that for any vector  we can
write the 1-norm as . Therefore

Fix some .

where in the last line we de�ned . Note that , 
 and  is an i.i.d. random variable. Therefore Hoe�ding’s inequality implies

that with probability at least ,

Next note that , therefore taking the union bound over all , we get
that with probability at least ,

In a last step, we take a union bound over ,  and . For taking the union
bound over the in�nite set of natural numbers, we can use the following simple trick.
Note that

This follows from the simple obseration that  and using a telescoping

sum argument. Therefore, with probability at least , for all ,  and 

1 − δ

∀k ≥ 1, P ∗ ∈ Ck,δ

s, a Xv ∈ S (s, a)

vth (s, a) u Pu,a(s, s′) = 1
u
∑u

v=1 I(Xv = s′)

(Xv)u
v=1 p ∈ R

S

∥p∥1 = sup∥x∥∞≤1⟨p, x⟩

∥Pu,a(s) − P ∗
a (s)∥1 = max

x∈{±1}S
⟨Pu,a(s) − P ∗

a (s), x⟩

x ∈ {±1}S

⟨Pu,a(s) − P ∗
a (s), x⟩ =

1

u

u

∑
v=1

∑
s′

xs′(I(Xv = s′) − P ∗
a (s, s′))

=
1

u

u

∑
v=1

Δv

Δv = ∑s′∈S xs′(I(Xv = s′) − P ∗
a (s, s′)) E[Δv] = 0

|Δv| ≤ 1 (Δv)u
v=1

1 − δ

1

u

u

∑
v=1

Δv ≤ 2√
log(1/δ)

2u

|{±1}S| = 2S x ∈ {±1}S

1 − δ

∥Pu,a(s) − P ∗
a (s)∥1 ≤ 2√

S log(2) + log(1/δ)

2u

s ∈ S a ∈ A u ≥ 1

∞

∑
u=1

δ

u(u + 1)
= δ

1
u(u+1) = 1

u − 1
u+1

1 − δ u ≥ 1 s ∈ S a ∈ A



5/16/22, 11:23 PM 23. Tabular MDPs - RL Theory

https://rltheory.github.io/lecture-notes/online-rl/lec23/ 4/10

Lastly, the claim follows by noting that . 

Theorem (UCRL Regret): The regret of UCRL de�ned with con�dence sets  satis�es
with probability at least :

where . In particular, for large enough ,
surpressing constants and logarithmic factors, we get

Proof: Denote by  the UCRL policy de�ned as

Further, let  be the optimistic model.

In what follows we assume that we are on the event . By the previous lemma, 
.

Fix  and decompose the (instantenous) regret in round  as follows:

Note that we used that  which holds because by de�nition  is an
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The �rst term is easily bounded. This is the crucial step that makes use of the optimism
principle. By  and the choice of  it follows that . In particular, we already
eliminated the dependence on the (unknown) optimal policy from the regret bound!

The last term is also relatively easy to control. Denote . Note that by the de�nition
of the value function we have  and . Hence  behaves like noise! If 
was an i.i.d variable we could directly apply Hoe�ding’s inequality to bound .

The sequence  has a property that allows us to obtain a similar bound. Let

be the data available to the learner at the beginning of the episode . Then by de�nition of
the value function, .

A sequence of random variables  with this property is called a martingale di�erence
sequence. Lucky for us, most properties that hold for (zero-mean) i.i.d. sequences can
also be shown for martingale di�erence sequences. The analogue result to Hoe�ding’s
inequality is called the Azuma-Hoe�ding’s inequalty. Applied to the sequence , Azuma-
Hoe�dings inequality implies that

It remains to bound term (II) in the regret decomposition:

Using the Bellman equation, we can recursively compute the value function for any policy 
:

We introduce the following shorthand for the value di�erence of policy  under models 
 and :
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The �rst inequality uses that for any two vectors , we have  and 
. Further we use that  is a deterministic policy, therefore 

. The second follows from the de�nition of the con�dence set in the

previous lemma:

Telescoping and using that  yields

Note that  is another martingale di�erence sequence (with ) that can be
bounded by Azuma-Hoe�ding:
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Proof of Lemma: Let .  is a concave function on . Therefore 
 for all . This translates to:

The claim follows from telescoping. 

Continuing the proof of the theorem where we need to bound . Denote 
. Further let  and

note that . Then

Next, using the algebraic lemma above and the fact that , we �nd

The last inequality uses Jensen’s inequality.

Collecting all terms and taking the union bound over two applications of Azuma-
Hoe�dings and the event  completes the proof. 

In our analysis of UCRL we assumed that the reward function is known. While this is quite
a common assumption in the literature, it is mainly for simplicity. We also don’t expect
the bounds to change by much: Estimating the rewards is not harder than estimating the
transition kernels.
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To modify the analysis and account for unkown rewards, we �rst consider the case with
deterministic reward function , where  is some known upper bound on
the reward per step.

Embracing the idea of optimism, we de�ne reward estimates

Clearly this de�nes an optimistic estimate, . Moreover, we have 
 at most  times. Therefore the regret in the previous analysis is

increased by at most .

When the reward is stochastic, we can use a maximum likelihood estimate of the reward
and construct con�dence bounds around the estimate. This way we can de�ne an
optimistic reward. Still not much changes, as the reward estimates concentrate at the
same rate as the estimates of .

Computing the UCRL policy can be quite challenging. However, we can relax the
construction so that we can use backward induction. We de�ne a time-inhomogenous
relaxation of the con�dence set:

Let  be the optimistic (time-inhomogenous)

transition matrices and  the optimal policy for the optimistic model 

. Then  is de�ned by the following backwards induction:

Note that the maximum in the second line is a linear optimization with convex
constraints that can be solved e�ciently. Further, the proof of the UCRL regret still
applies, because we used the same (step-wise) relaxation in the analysis.

We can further relax the backward induction to avoid the optimization over 
completely:
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This leads us to the the UCBVI (upper con�dence bound value iteration) algorithm. In
episode , UCBVI uses value iteration for the estimated transition kernel  and
optimistic reward function  to compute the policy.

UCBVI (Upper con�dence bound value iteration):

In episodes ,

Note that we truncate the -function to be at most , this avoids a blow up by a factor
of  in the regret bound. Carefully checking that the previous analysis still applies shows
that UCBVI has regret at most .

By more carefully designing the reward bonuses for UCBVI, it is possible to achieve 
 which matches the lower bound up to logarithmic factors in the time

in-homogeneous setting.
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