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RL Theory

Planning in MDPs / 1. Introductions

Hello everyone and welcome to CMPUT 653: Theoretical Foundations of Reinforcement
Learning at the University of Alberta. We are very excited to be teaching this course and
hope that you are excited to journey with us through reinforcement learning theory. The
course will cover three sub-topics of RL theory: (1) Planning, (2) Batch RL, and (3) Online
RL:

Planning refers to the problem of computing plans, or policies, or just action by
interacting with some model.

Batch RL refers to the problem of coming up with plans, policies, value predictions but
when the input is just some data obtained by interacting with an environment.

Online RL refers to the problem of coming up with actions that maximize total reward
while interacting with an environment.

In all of these subproblems, we will use Markov Decision Processes, to describe how either
the simulation models, or the environments work. Thus, we start by introducing the
formal de�nition of a Markov Decision Process (MDP).

A Markov Decision Process is a mathematical model for modelling sequential decision
making in an environment that undergoes stochastic transitions. An MDP consists of the
following elements: states, actions, rules of stochastic transitions between states,
rewards, and an objective, which we take for now to be the discounted total expected
reward, or return.

States are considered to be primitive thus we do not explicitly de�ne what they are. The
set of states will be denoted by . Actions are also primitive and their set is denoted by .
For simplicity, we assume that both sets are �nite. We will let the number of states be
denoted by , and similarly, we let the number of actions be denoted by . Stochastic
transitions between states  and  are the result of choosing some action  in a given
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state. For a �xed state  and action , the probabilities of landing in the various states  is
collected into a probability vector, which is denoted by . To minimize clutter, by
slightly abusing notation, we will write  as the  component of this probability
vector. This is the probability that the process will transition into state , when in state 
it takes action .

Rewards are scalars and the reward incurred as a result of taking action  in state  is
denoted by . Since the number of states and actions are �nite, there is no loss in
generality by assuming that all the rewards belong to the  interval. Taking action  at
time step  gives rise to an in�nitely long trajectory of state-action pairs :
here,  is the state that results from taking action  in time step  and the
assumption is that as long as  is chosen based on the “past” only, the distribution of 

 given  is solely determined by , and, in particular, -almost
surely,

The objective is to �nd a way of choosing the actions that result in the largest possible
return along the trajectories that arise. The return along a trajectory is de�ned as

where  is the discount factor. Formally, a (discounted) MDP will thus be described
by the -tuple , where  and  collect the
transitions and the rewards, respectively.

Note that  makes it so that the future reward does not matter as much as the present
reward. Also, if we truncate the above sum after  terms, by our assumption on the
rewards, the di�erence between the return and the truncated return is between zero and

by using the summation rule for geometric series. Solving for the largest  under which
the above upper bound on the di�erence is below , we get that this bound on the
di�erence holds as long as  satis�es

s a s′

Pa(s)

Pa(s, s′) s′ ∈ S

s′ s

a

a s

ra(s)

[0, 1] At

t S0,A0,S1,A1, . . .

St+1 At t ≥ 0

At

St+1 S0,A0, … ,St,At PAt
(St) P

P(St+1 = s|S0,A0, … ,St,At) = PAt
(St, s) . (1)

R = rA0(S0) + γrA1(S1) + γ 2rA2(S2) + ⋯ + γ trAt
(St) + …

γ ∈ [0, 1)

5 M = (S,A,P , r, γ) P = (Pa(s))s,a r = (ra(s))s,a

On Discounting
γ

H ≥ 0

γH[rAH
(SH) + γrAH+1(SH+1) + … ] ≤ γH ∑

s≥0

γ s =
γH

1 − γ

H

ε

H

H ≥
ln( 1

ε(1−γ) )

ln(1/γ)
H ∗

γ,ε

.



5/16/22, 11:21 PM 1. Introductions - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec1/ 3/10

For  satisfying this, the return is maximized already when considering only the �rst 
time steps.

Notice that the critical value of  depends on not only  but also . For a �xed , this
critical value is called the e�ective horizon.

Oftentimes, for the sake of simplicity, we replace  with the following quantity:

(In fact, the literature often calls the latter the e�ective horizon). This quantity is an
upper bound on . Furthermore, it is not hard to verify that the relative di�erence
between these two quantities is of order  as . Thus,  behaves the same as 

 up to a �rst-order approximation as . Since we are typically interested in this
regime (large horizons), there is no loss in switching from  to .

The discounted setting may occasionally feel a bit cringey. Where is the discount factor
coming from? One approach is to think about how many time steps in the future we think
the optimization should look into for some level of desired accuracy and then work
backwards to set  so that the resulting e�ective horizon matches our expectation.
However, it is more honest to admit that the discounted objective may not faithfully
capture the nature of a decision problem. Indeed, there are other objectives that one can
consider, such as the �nite horizon, undiscounted (or discounted) setting, the in�nite
horizon setting with no discounting (“total reward”), or the in�nite horizon with the
average reward. All these have their own pros and cons and we will consider some of these
objectives and their relationships in future lectures. For now, we will stick to the
discounted objective for pedagogical reasons: the math underlying the discounted
objective is simple and elegant. Also, many results transfer to the other settings
mentioned, perhaps with some extra conditions, or a little change.

A policy is a rule that describes how the actions should be taken in light of the past. Here,
the past at time step  is de�ned as

which is the sequence of state-action pairs leading up to the state of the process at the
current time step . We allow policies to randomize. As such, formally, a policy becomes
an in�nite sequence  of maps of histories to distributions over actions. For a
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(�nite) set  let  denote the set of probability distributions over . These
probability distributions are uniquely determined by what probability they assign to the
individual elements of . Hence, they will be identi�ed with the probability vectors with 

 components, each component giving the probability of some . If , we
use both  and  to denote this probability (whichever is more convenient).

With this, we can write that the th “rule” in , which will be used in the th time step to
come up with the action for that time step, as

where

Note that . Intuitively, following a policy  means that in time step , the
distribution of the action  to be chosen for that timestep is : the probability that 

 is . Since writing  is quite cumbersome, we abuse notation and will
write  instead. Thus, when following a policy , in time step  we get that, -
almost surely,

When a policy is interconnected with an MDP, the interconnection, together with an
initial distribution  over the states, uniquely determines a distribution over the
in�nite-long trajectories

such that for every time step , both  and  hold, in addition to that

In fact, this distribution could be over some potentially bigger probability space, in which
case uniqueness does not hold. When we want to be speci�c and take the distribution that
is de�ned over the in�nite-long state-action trajectories, we will say that this is the
distribution over the canonical probability space induced by the interconnection of the
policy and the MDP.

To emphasize the dependence of the probability distribution  on  and , we will often
use , but we will also take the liberty to drop any of these indices when its identity can
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be uniquely deduced from the context. When needed, the expectation operator
corresponding to  (or ) will be denoted by  (respectively, ).

What is the probability assigned to a trajectory ? Let 
. Recall that . By a repeated

application of the chain rule of probabilities, we get

Collecting the terms,

Similarly,

The total expected discounted reward, or the expected return of policy  in MDP  when
the initial state is sampled from  is

When  where  is the “Dirac” probability distribution that puts a point mass at , we
use  to denote the resulting value. Since this assigns a value to every state,  can be
viewed as a function assigning a value to every state in . This function will be called the
value function of policy . When the dependence on the MDP is important, we may add “in
MDP ” and denote the dependence by introducing an index: .

The best possible value in state  that can be obtained by optimizing over all possible
policies is
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Then, , viewed as a function, is called the optimal value function. A policy is
optimal in state  if . A policy is uniformly optimal if it is optimal in every
state. In what follows, we will drop uniformly as we will usually be interested in �nding
uniformly optimal policies.

Given an MDP, we are interested in e�ciently computing an optimal policy.

Computing an optimal policy can be seen as a planning problem: the optimal policy
answers the question of how to take actions so that the expected return is maximized.
This is also an algorithmic problem. The input, in the simplest case, is a big table (or a
number of tables) that describes the transition probabilities and rewards. The interest is
to develop algorithms that read in this table and then as output should return a
description of an optimal policy. At this stage, it may seem unlikely that an e�cient
algorithm could do this: in the above unrestricted form, policies have an in�nite
description. As we shall �nd out soon though, we will be lucky with �nite MDPs as in such
MDPs one can always �nd optimal policies that have a short description. Then, the
algorithmic question becomes interesting!

As for any algorithmic problem, the main question is how many elementary
computational steps are necessary to solve an MDP? As can be suspected, the number of
steps will need to scale with the number of states and actions. Indeed, even the size of the
input scales with these. If computation indeed needs to scale with the number of state-
action pairs, is there still any reason to consider this problem given that the number of
states and actions in MDPs that one typically encounters in practical problems is
astronomically large, if not in�nite? Yes, there are:

Not all MDPs are in fact large and it may be useful to know what it takes to “solve” a
small MDP. Good solvers for “small” MDPs may serve as benchmarks for solvers
developed for the “large MDP” case.

Even if a problem is large (or in�nite), one may be able to approximate it well with a
small MDP. Then, a solver for a small MDP may be useful.

Some ideas and tools developed for this problem also generalize (perhaps) with some
twists to the “large” MDP setting.

At this stage, the reader may be wondering about what is meant by “small” and “large”?
As a rough guideline, by “small” we mean problems where the tables describing the MDP

v∗ : S → R

s vπ(s) = v∗(s)
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(and/or policy) comfortably �t in the memory of whatever computer one has access to.
Large is everything else.

Based on the above calculations, one expects that the probability of a trajectory 
 that never ends is

where  as before. However, this does not work: if in the
trajectory, each action is taken with probability  by the policy on the given history, the
in�nite product on the right-hand side is zero! This should make one pause at least for a
moment: how is then  even de�ned? Does this distribution even exist? If yes, and it
assigns zero probability to trajectories like above, could not it be that it assigns zero to all
the trajectories of in�nite length? In the world of in�nite, one must tread carefully! The
way out of this conundrum is that we must use measure theoretic probabilities, or we
need to give up on objects like the return, , which is de�ned on
trajectories of in�nite length. The alternative to measure theoretical probability is to
de�ne everything through by taking limits (and always taking expectations over �nite-
length pre�xes of the in�nite long trajectories). As this would be quite cumbersome, we
will take the measure-theoretic route, which will be explained in the next lecture.

Equation  tells us that the only thing that matters from the history of the process as far
as the prediction of the next state is concerned is the last action and the last state. This is
known as the Markov property. More generally, Markov chains, which are speci�c
stochastic processes, have a similar property.

Richard Bellman, who has made many foundational contributions to the early theory,
coined the term the “curse of dimensionality”. By this, Bellman meant the following:
oftentimes when MDPs are used to model a practical decision making problem, the state
space oftentimes takes the product form  with some . If each set 
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here has at only two(!) elements, the state space will have at least  elements. This is an
exponential growth as a function of , which is taken as the fundamental scaling quantity.
Thus, any algorithm that needs to even just enumerate the states in the state space is
“cursed” to perform a very lengthy calculation. While we start with considering the case
when both the state and the action space are small (as described above), the main focus
will be on the case when this is not true anymore. In this way, the problem will be to �gure
out ways of breaking the curse. But just to make things clear, in the worst-case, there is
no cure to this curse, as we shall see it soon in a rigorous fashion. Any cure will come by
changing the problem, either by changing the objective, or by changing the inputs
available, or both.

We described MDPs as if the same set of actions was available in all the states. This may
create the (false) impression that action  in state  has something to do with action 
in state  (i.e., their rewards, or next state distributions are shared or are similar). Given
the MDP de�nition though, clearly, no such assumptions are made.

In a way, a better way of describing an MDP is using a set  and an equivalence relation
over , or, equivalently, the partition induced by it over . We should think of  as the set
of possible state-action pairs: The equivalence relation over  then gives which of these
share a common state. Alternatively, if  and  are in the same partition, they share a
state, which we can identify with the partition. Then, for every , the MDP would
specify a distribution over the parts of the partition (the “next states”) and one should
specify a reward. While this description is appealing from a mathematical perspective, it
is nonstandard and would make it harder to relate everything to the literature.
Furthermore, the description chosen, apart from the inconvenience that one need to
forcefully remember that actions do not keep their identity across states, is quite intuitive
and compact.

A common variation in the literature, which avoids the “sharing issue” is to assume that
every state is equipped with a set  of actions admissible to the state and these sets are
disjoint across the states. This description allows the number of actions to be varied
across the states. While this has a minor advantage, our notation is simpler and tends not
to lose much in comparison to these more sophisticated alternatives.

In many practical problems it is not a priori clear whether the problem has a good
approximate description as an MDP. One critical aspect that is missing from the MDP
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description is that the states of the MDP may not be available for measurement and thus
the control (the choice of the action) cannot use state information. For now, we push this
problem aside, but we shall return to it time-to-time. The reason is that it is best to start
with the simpler questions and, at least intuitively, the problem of �nding a policy that
can use state information feels easier than �nding one that cannot even access the state
information. First, at least, we should �nd out what can be done in this case (and how
e�ciently), hoping that the more complex cases will either be reducible to this case, or
will share some common patterns.

Why use  rather than, say, ? Or , or  rather than ? All these
notations have pros and cons. None of them is ideal for all purposes. One explanation for
using this notation is that later we will replace  with , where  will be a special policy (a
memoryless, or stationary Markov policy). When doing so, the notation of  (suppressing
) and  (a stochastic matrix!) will be tremendously useful.

A bigger question is why use  for states and  for actions. Is not the answer in the words?
Well, people working in control would disagree. They would prefer to use  for state and 
for actions, and I am told by Maxim Raginsky, that these come from Russian
abbreviations, so they make at least as much sense as the notation used here. That is, if
one speaks Russian (and if not, why not learn it?). Dimitri Bertsekas likes using  etc. for
states, which seems �ne if one has discrete (countable) state spaces.

Some authors (e.g., this author in some of their papers or even in his book) considers
rewards which are stochastic. This may matter when the problem is to learn a good policy,
or to �nd a good plan while interacting with a stochastic simulator. However, when it
comes to de�ning the object of computation, we can safely ignore (well-behaved)
stochastic rewards. Here, the well-behaved stochastic rewards are those whose
conditional expectation given an arbitrary history up to a state  and an action  taken in
that state depends only on . Which is what we start here from.

“The” book about MDPs is:

Puterman, Martin L. 2005. Markov Decision Processes (Discrete Stochastic Dynamic
Programming). Wiley-Interscience.
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RL Theory

Planning in MDPs / 2. The Fundamental Theorem

We start by recapping the de�nition of MDPs and then �rm up the loose ends from the
previous lecture: why do the probability distributions  exist and how are they de�ned?

We then continue with the introduction of what we call the Fundamental Theorem of
Dynamic Programming and end with the discussion of value iteration.

A Markov decision Process (MDP) is a 5-tuple , where  represents
the state space,  represents the action space,  collects the next state
distributions for each state-action pair (to represent the transition dynamics), 

 gives the immediate rewards incurred for taking a given action in a given
state, and  is the discount factor. As said before, for simplicity, the state set 
and the action set  are �nite.

A policy  is an in�nite long sequence where for each , 
 assigns a probability distribution to histories of length 

. (For  we use  to denote the set of nonnegative measures  over  that
satisfy .) Following a policy in an MDP means that the distribution of the
actions in each time step  will follow what is prescribed by the policy for whatever
the history is at that time.

When a policy is used in an MDP, the interconnection of the policy and the MDP, together
with a start-state distribution, results in a distribution  such that for the in�nite long
sequence of state-action pairs , , and 

 for all  where  is the history at
time step . This closed loop interaction (or interconnection) of the policy and the MDP is
shown in the �gure below.

2. The Fundamental Theorem
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One loose end from the previous lecture was the existence of the probability measures .

For this, we have the following result:

Theorem (existence theorem): Fix a �nite MDP  with state space  and action space .
Then there exists a measurable space  and a sequence of random elements 

 over this space, ,  for , such that for any policy 
 of the MDP  and any probability measure  over , there exists

a probability measure  over  satisfying the following properties:

Furthermore, uniqueness holds in the following sense: if  together with 

 also satisfy the conditions of the de�nition with  denoting the

associated probability measures for speci�c choices of  then for any , , the joint

distribution of  under  and that of  under  are

identical.

Proof: Use the Ionescu-Tulcea theorem (Theorem 3.3 in the “bandit book”, though the
theorem statement there is weaker in that the uniqueness property is left out). 
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Property 3 above is known as the Markov property and is how MDPs derive their name.
Note that implicit in the statement of this result is that  and  are endowed with the
discrete -algebra. This is because we want both  and  to be events for any 

 and  (these appear in the conditions underlying properties 1-3).

Note that the result does not point to any singular measurable space. Indeed, there are
many ways to choose . However, as long as we are only concerned with properties
of the distributions of state-action trajectories, thanks to the uniqueness part of the
theorem, no ambiguity will arise from this. As a result, in general, we will not care about
the choice of : Any choice as given in the theorem will work. However, for some
proofs, it will be convenient to choose , the set of in�nite long trajectories as ,
while setting ,  ( ) and
choosing , which the smallest  algebra that makes  measurable
for any . We will call the resulting probability space the canonical probability space
underlying the MDP.

As usual, we use  to denote the expectation operator underlying a probability measure .
When the dependence on  or  is important, we use . We may drop any of these, when

the dropped quantity is clear from the context. We will pay special attention to start state
distributions concentrated on a single state. When this is state , the distribution is
denoted by : this is the well-known Dirac distribution with an atom at . The reason we
pay special attention to these is because these in a way form the basis of all start state
distributions (and in fact quantities that depend linearly on start state distributions). We
will use the shorthand  for . Similarly, we use  for .

De�ne the return over a trajectory  as

The value function  of policy  maps states to values and in particular for a state , 
 is de�ned via : This is the expected return under the distribution

induced by the interconnection of policy  and the MDP when the start state is . Note
that  is well-de�ned. This is because it is the expectation of a quantity that is a
function of the trajectory ; for an explanation see the end-notes.

S A

σ St = s At = a

s ∈ S a ∈ A

(Ω, F)

(Ω, F)
(S × A)N Ω

St((s0, a0, s1, a1, …)) = st At((s0, a0, s1, a1, …)) = at t ≥ 0
F = (2S×A)⊗N σ (St,At)

t ≥ 0

Optimality and Some Notation
E P

μ π E
π
μ

s

δs s

P
π
s P

π
δs

E
π
s E

π
δs

τ = (S0,A0,S1,A1, …)

R =
∞

∑
t=0

γ trAt
(St).

vπ π s ∈ S

vπ(s) vπ(s) = Eπ
s [R]

π s

vπ(s)
τ
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The standard goal in an MDP is to identify a policy that maximizes this value in every
state. A policy achieving this is known as an optimal policy. Whether an optimal policy
exists at all is not clear at this stage. In any case, if it exist, an optimal policy must satisfy 

 where  is de�ned by

By the de�nition of the optimal value function, we have  for all  and
any policy . We also use  to express this. In general,  for two functions 
that are de�ned over the same domain and take values (say) in the reals, if 
holds for all the possible elements  of their common domain. We similarly de�ne .

We will also identify functions with vectors and allow vector-space operations on them.
All vectors, unless otherwise stated, are column vectors. The symbol  is de�ned as a
vector of ones. The length of this vector can change depending on the context. In this
lecture, it will be -dimensional. This symbol will be very useful in a number of
calculations. We start with a de�nition that uses it.

Let . A policy  is said to be -optimal if

Finding an -optimal policy with a positive  should intuitively be easier than �nding an
optimal policy.

If optimal policies would need to remember the past of arbitrary length, it would be
hopeless to search for e�cient algorithms that can compute them as even describing
them could take in�nite time. Luckily, this is not the case. In �nite MDPs, it will turn out
to be su�cient to consider policies that use only the most recent state without losing
optimality: this is the subject of the fundamental theorem of MDPs, which we will give
shortly. We call the policies that take only the most recent state into account memoryless.

Formally, a memoryless policy can be identi�ed with a map from the states to probability
distributions over the actions: . Given , the memoryless policy, using
our previous policy notation, is , where we
abuse notation by using  in place of . Thus, as expected, the policy itself
“forgets” the past and just uses the most recent state in assigning probabilities to the

vπ = v∗ v∗ : S → R

v∗(s) = sup
π

vπ(s) , s ∈ S .

vπ(s) ≤ v∗(s) s ∈ S

π vπ ≤ v∗ f ≤ g f, g
f(z) ≤ g(z)

z f ≥ g

1

S

Approximately optimal policies
ε > 0 π ε

vπ ≥ v∗ − ε1 .

ε ε

Memoryless Policies (ML)

m : S → M1(A) m

πt(a|s0, a0, … , st−1, at−1, st) = m(a|st)
m(a|st) m(st)(a)
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individual actions. Under a distribution induced by interconnecting a memoryless policy
with an MDP, the sequence of state-action pairs forms a Markov chain.

In what follows, by abusing notation further, when it comes to a memoryless policy, we
will identify  with  and will just write .

For building up to the proof of the fundamental theorem, we start with the concept of
discounted occupancy measures.

Given a start state distribution  and a policy , the (discounted) occupancy
measure  induced by  and  and the underlying MDP  is

de�ned as

Interestingly, the value function can be represented as an inner product between the
immediate reward function  and the occupancy measure :

where  is the indicator of the event , which gives the
value of one when the event holds (i.e.,  and ), and gives zero otherwise.
That the summation over  can be moved outside of the expectation in the �rst
equality follows because expectations are linear. That the in�nite sum can be moved

π m π : S → M1(A)

(Discounted) Occupancy Measure
μ ∈ M1(S) π

νπ
μ ∈ M1/(1−γ)(S × A) μ π M

νπ
μ(s, a) =

∞

∑
t=0

γ t
P
π
μ(St = s,At = a).

r νπ
μ

vπ(μ) = E
π
μ [

∞

∑
t=0

γ trAt
(St)]

= ∑
s,a

∞

∑
t=0

γ t
E
π
μ [rAt

(St)I(St = s,At = a)]

= ∑
s,a

ra(s)
∞

∑
t=0

γ t
E
π
μ [I(St = s,At = a)]

= ∑
s,a

ra(s)
∞

∑
t=0

γ t
P
π
μ(St = s,At = a)

= ∑
s,a

ra(s)νπ
μ(s, a)

=: ⟨νπ
μ , r⟩,

I(St = s,At = a) St = s,At = a

St = s At = a

(s, a)
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outside is more subtle: this follows from Lebesgue’s dominated convergence theorem.
See, for example, Chapter 2 of Lattimore & Szepesvári (2020).

With the above equation, we see that the problem of maximizing the expected reward for
a given initial distribution is the same as choosing a policy that “stirs” the occupancy
measure to maximally align with the reward vector . A better alignment will result in a
higher value for the policy. This is depicted in the �gure below.

A key step in proving the su�ciency of memoryless policies for optimal control is the
following result:

Theorem: For any policy  and a start state distribution , there exists a
memoryless policy  such that

Proof (hint): First de�ne the occupancy measure over the state space 
. Then show that the theorem statement holds for the policy 

de�ned as follows:

where  is an arbitrary distribution. To do this, expand  using the

de�nition of discounted occupancy measures and use algebra.

r

π μ ∈ M1(S)
π′

νπ′

μ = νπ
μ .

~νπ
μ(s) := ∑a ν

π
μ(s, a) π′

π′(a|s) = {
νπ
μ(s,a)
~νπ
μ(s)

if ~νπ
μ(s) ≠ 0

π0(a) otherwise,

π0(a) ∈ M1(A) ~νπ
μ

■
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Note that it is crucial that the memoryless policy obtained depends on the start state
distribution: The reader should try to convince themselves that there are non-
memoryless policies whose value function cannot be reproduced by a memoryless policy
at every state.

The last de�nitions and results that we need before stating the fundamental theorem
concern what are known as Bellman operators.

Fix a memoryless policy . Recall that  is the cardinality (size) of . First, de�ne 
 to be the expected reward under policy  for a given state .

Again, we overload the notation and let  denote a vector whose th element 
. Similarly, we de�ne  and let 
 denote the stochastic transition matrix where the element in the th row

and th column . Note that each row of  sums to one:

The Bellman/policy evaluation operator underlying , , is de�ned as

or, in short,

where . The Bellman operator performs a one-step lookahead (also called a
Bellman lookahead) on the value function. We will use the notations , ,
and  interchangeably.  is also known as the policy evaluation operator for the
policy .

The Bellman optimality operator  is de�ned as

We use  to denote the maximum-norm: . The maximum-norm
is a “good friend” of the operators we just de�ned. This is because stochastic matrices,

Bellman Operators, Contractions

π S S

rπ(s) = ∑a π(a|s)ra(s) π s

rπ ∈ RS s

(rπ)s = rπ(s) Pπ(s, s′) := ∑a π(a|s)Pa(s, s′)
Pπ ∈ [0, 1]S×S s

s′ (Pπ)s,s′ = Pπ(s, s′) Pπ

Pπ1 = 1 .

π Tπ : RS → RS

Tπv(s) = ∑
a

π(a|s){ra(s) + γ∑
s′

Pa(s, s′)v(s′)}

= ∑
a

π(a|s) {ra(s) + γ⟨Pa(s), v⟩}

Tπv = rπ + γPπv,

v ∈ RS

(Tπ(v))(s) Tπv(s)
(Tπv)s Tπ

π

T : R
S → R

S

Tv(s) = max
a

{ra(s) + γ⟨Pa(s), v⟩}.

∥ ⋅ ∥∞ ∥v∥∞ = maxi |vi|
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viewed as operators and “maximizing” are “good friends” of this norm. All this results in
the following proposition:

Proposition ( -contraction of the Bellman Operators): Given any two vectors 
and any memoryless policy ,

The proposition can be proved by elementary algebra and the complete proof can be found
in Appendix A.2 of Szepesvári (2010).

For action , we will �nd it useful to also de�ne the operator  which
matches  with the memoryless policy which in every state chooses action . Of course,
this operator, being a special case, satis�es the above contraction property as well. This
can be seen as performing a one-step lookahead with a �xed action.

From Banach’s �xed point theorem, we get the following corollary:

Proposition (Fixed-point iteration): Given any  and any memoryless policy ,

De�nition: A memoryless policy  is greedy w.r.t. to a value function  if in
every state , with probability one  chooses actions that maximize 

.

γ u, v ∈ RS

π

, and1 ∥Tπu − Tπv∥∞ ≤ γ∥u − v∥∞

.2 ∥Tu − Tv∥∞ ≤ γ∥u − v∥∞

a ∈ A Ta : RS → RS

Tπ a

u ∈ R
S π

 and in particular for any , 
where  is the unique vector/function that satis�es ;

1 vπ = limk→∞ T k
π u k ≥ 0 ∥vπ − T k

π u∥∞ ≤ γk∥u − vπ∥∞

vπ Tπv
π = vπ

 is well-de�ned and in particular for any , 
. Furthermore,  is the unique vector/function that

satis�es .

2 v∞ = limk→∞ T ku k ≥ 0
∥v∞ − T ku∥∞ ≤ γk∥u − v∞∥∞ v∞

Tv∞ = v∞

The Fundamental Theorem
π v : S → R

s ∈ S π

(Tav)(s) = ra(s) + γ⟨Pa(s), v⟩
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Note that there can be more than one action that maximizes the (one-step) Bellman
lookahead  at any given state (in case there are ties). In fact, ties can be
extremely common: Just imagine “duplicating an action” in every state (i.e., the new
action has the same associated transitions and rewards as the copied one). If the copied
one was maximizing the Bellman lookahead at some state, the new action will do the
same. Because we have �nitely many actions, a maximizing action always exist. Thus, we
can always “take” a greedy policy w.r.t. any .

Proposition (Characterizing greedyness): A memoryless policy  is greedy w.r.t. 
if and only if

With this, we are ready to state what I call the Fundamental Theorem of MDPs:

Theorem (Fundamental Theorem of MDPs): The following hold true in any �nite MDP:

The equation  is known as the Bellman optimality equation and the second part of
the result can be stated in words by saying that the optimal value function satis�es the
Bellman optimality equation. Also, our previous proposition on �xed-point iteration,
where we already came across the Bellman optimality equation, foreshadows a way of
approximately computing  that we will get back to after the proof.

Proof: The proof would be easy if we only considered memoryless policies when de�ning 
. In particular, letting  stand for the set of memoryless policies of the given MDP,

de�ne

(Tav)(s)

v ∈ RS

π v ∈ R
S

Tπv = Tv .

Any policy  that is greedy with respect to  is optimal: ;1 π v∗ vπ = v∗

It holds that .2 v∗ = Tv∗

v = Tv

v∗

v∗ ML

~v∗(s) = sup
π∈ML

vπ(s) for all s ∈ S .
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As we shall see soon, it is not hard to show the theorem just with  replaced everywhere
with . That is:

This is what we will show in Part 1 of the proof, while in Part 2 we will show that .
Clearly, the two parts together establish the desired result.

Part 1: The idea of the proof is to �rst show that 

and then show that for any greedy policy , .

The displayed equation follows by noticing that  holds for all memoryless policies 
 by de�nition. Applying  on both sides, using , we get . Taking

the supremum of both sides over  and noticing that  for any ,
together with the de�nition of  gives .

Now, take any memoryless policy  that is greedy w.r.t. . Thus, .

Combined with , we get

Applying  on both sides and noticing that  keeps the inequality intact (i.e., for any 
 such that  we get ), we get

where the last inequality follows from . With the same reasoning we get that for any 
,

Now, by our proposition, the �xed-point iteration  converges to . Hence, taking
the limit above, we get

This, together with  shows that .

Finally, .

v∗

~v∗

Any policy  that is greedy with respect to  satis�es ;1 π ~v∗ vπ = ~v∗

It holds that .2 ~v∗ = T~v∗

~v∗ = v∗

~v∗ ≤ T~v∗ (1)
π vπ ≥ ~v∗

vπ ≤ ~v∗

π Tπ vπ = Tπv
π vπ ≤ Tπ

~v∗

π Tv = supπ∈ML Tπv v
~v∗ (1)

π ~v∗ Tπ
~v∗ = T~v∗

(1)

Tπ
~v∗ ≥ ~v∗ . (2)

Tπ Tπ

u, v u ≤ v Tπu ≤ Tπv

T 2
π

~v∗ ≥ Tπ
~v∗ ≥ ~v∗ ,

(2)
k ≥ 0

T k
π

~v∗ ≥ T k−1
π

~v∗ ≥ ⋯ ≥ ~v∗ ,

T k
π

~v∗ vπ

vπ ≥ ~v∗.

vπ ≤ ~v∗ vπ = ~v∗

T~v∗ = Tπ
~v∗ = Tπv

π = vπ = ~v∗
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Part 2: It remains to be shown that . Let  be the set of all policies. Because 
, . Thus, it remains to show that

To show this, we will use the theorem that guaranteed that for any state-distribution 
and policy  (memoryless or not) we can �nd a memoryless policy, which we will call for
now , such that . Fix a state . Applying this result with , we

get

Taking the supremum of both sides over , we get . Since 
 was arbitrary, we get , �nishing the proof. 

A property that came up during the proof that we will repeatedly use is that  is
monotone as an operator. The same holds for . For the record, we state these as a
proposition:

Proposition (monotonicity of Bellman operators): For any memoryless policy , 
 holds for any  such that . The same also holds for , the

Bellman optimality operator.

According to the Fundamental Theorem of MDPs, if we have access to the optimal value
function , then we can �nd the optimal policy in an e�cient and e�ective way. We just
have to greedify it w.r.t. to the value function: (abusing the policy notation) 

. Such a greedy policy can be found
in  time.

Hence, if we can e�ciently �nd the optimal value function, we will get an e�cient way of
computing an optimal policy. This is to be contrasted with the naive approach to �nding

~v∗ = v∗ Π
ML ⊂ Π ~v∗ ≤ v∗

v∗ ≤ ~v∗ . (3)

μ

π

ML(π) νπ
μ = νML

μ s ∈ S μ = δs

vπ(s) = ⟨νπ
s , r⟩

= ⟨ν
ML(π)
s , r⟩

≤ sup
π′∈ML

⟨νπ′

s , r⟩

= sup
π′∈ML

vπ
′
(s) = ~v∗(s) .

π v∗(s) = supπ∈Π vπ(s) ≤ ~v∗(s)
s ∈ S v∗ ≤ ~v∗ ■

Tπ

T

π

Tπu ≤ Tπv u, v ∈ RS u ≤ v T

v∗

π(s) = arg maxa∈A{ra(s) + γ⟨Pa(s), v∗⟩} ∀s ∈ S

O(S2A)
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an optimal policy, which is to enlist all the policies and compare their value functions to
�nd a policy whose value function dominates the value functions of all the other policies.

However, even if we restrict ourselves to just the set of deterministic policies, there are 
 such policies and thus this can be a costly procedure.

As it turns out, for �nite MDPs, there is a way to calculate optimal policies in time that is
polynomial in , , and , avoiding the exponential growth of the naive
approach with the size of the state space. Algorithms that can do this belong to the family
of dynamic programming algorithms. For our purposes, we call any algorithm a dynamic
programming algorithm that uses the idea of keeping track of value of states (that is, uses
value functions) while doing its calculations.

The Fundamental Theorem is somewhat surprising: how come that we can �nd policies
whose value function dominates that of all other policies? In a way, the Fundamental
Theorem tells us that the set of value functions of all policies in some MDP (as a set in )
is very special: It has a “vertex” which dominates all the other value functions. This is
quite fascinating. Of course, the key was the Markov property as this gave us the tool to
show the result that allowed us to switch from arbitrary policies to memoryless ones.

By the Fundamental Theorem,  is the �xed point of . By our earlier proposition, which
built on the Banach’s �xed point theorem, the sequence  converges to  at a
geometric rate. In the context of MDPs, the process of repeatedly applying  to some
function is called value iteration. The initial function is usually taken to be the all-zero
function, which we denote by , but, of course, if there is a better initial guess on , that
guess can also be used at initialization. The next result gives a bound on the number of
iterations required to reach an -neighborhood (in the max-norm sense) of :

Theorem (Value Iteration): Consider an MDP with immediate rewards in the 
interval. Pick an arbitrary positive number . Let  and set

Then, for , .

Θ(AS)

S A 1/(1 − γ)

R
S

Value Iteration
v∗ T

{T kv}k≥0 v∗

T

0 v∗

ε v∗

[0, 1]
ε > 0 v0 = 0

vk+1 = Tvk for k = 0, 1, 2, …

k ≥ ln(1/(ε(1 − γ))/ ln(1/γ) ∥vk − v∗∥∞ ≤ ε
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Before the proof recall that

Thus, the e�ective horizon, , whom we met in the �rst lecture, appeared again. Of
course, this is no coincidence.

Proof: By our assumptions on the rewards,  holds for any policy . Hence,

 also holds. By our �xed-point iteration proposition, we get

Solving for the smallest  such that  gives the result.

For �xed , note the mild dependence of the iteration complexity on the target
accuracy : we can expect with only a handful iterations to get in a small vicinity of .
Note also that the total computation cost is  and the space required is at most 

, all assuming each value takes up  memory and arithmetic and logic operations
also require  time.

Note that accuracy requirement was set up in the form of additive errors. If the value
function  is of order  (the maximum possible order), a relative accuracy of
order  means setting , making the iteration complexity to be 

. However, for controlling the relative error, the more interesting case is
when  takes on small values. Here, we see that the complexity may grow unbounded.
Later, we will see that in a way this lack of �ne-grained error control of value iteration
will mean that value iteration is not ideal for calculating exactly optimal policies.

As noted in the text, value functions are well-de�ned despite that the probability space 
 is not uniquely de�ned. In fact, for any  (measurable)

function and for any  and  probability spaces, as long as both  and 
 satisfy the requirements postulated in the existence theorem, 

Hγ,ε :=
ln(1/(ε(1 − γ)))

1 − γ
≥

ln(1/(ε(1 − γ)))

ln(1/γ)
.

Hγ,ε

0 ≤ vπ ≤ 1
1−γ

1 π

∥v∗∥∞ ≤ 1
1−γ

∥vk − v∗∥∞ ≤ γk∥v∗ − 0∥∞ = γk∥v∗∥∞ ≤
γk

1 − γ
.

k γk/(1 − γ) ≤ ε

■

γ < 1
ε v∗

O(S2Ak)
O(S) O(1)

O(1)

v∗ 1/(1 − γ)
2 ϵ = 0.5/(1 − γ)

ln(2)/(1 − γ)
v∗

Notes

Value functions are well-de�ned

(Ω, F , P) f : (S × A)N → R

(Ω, F , P) (Ω′, F
′, P

′) P

P′
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, or, introducing  ( ) to denote the expectation
operator underlying  (respectively, ), . It also follows that if we
only need probabilities and expectations over trajectories, it su�ces to choose 
as the canonical probability space induced by the state-action space of the MDP at hand.

The obvious question is what survives of all this in other types of MDPs, such as �nite-
horizon homogenous or inhomogeneous, with or without discounting, total cost (i.e.
negative rewards only), or of course the average cost setting? The story is that the
arguments can be usually made to work, but this is not entirely automatic. The subject is
well-studied and we will give some references and hints later, perhaps even answer some
of these questions.

The �rst thing that changes when we switch to in�nite spaces is that we cannot take the
assumption that the immediate rewards are bounded for granted. This can cause quite a
bit of trouble:  for some policies can be unbounded, and the same holds for . Negative
in�nite values could be especially “hurtful”. (LQR control is the simplest example where
this comes up.)

Another issue is that we cannot take the existence of greedy policies for granted. This
happens already when the number of actions is in�nite (what is the action that maximizes
the reward  where ?). Oftentimes compactness of the action space
and continuity assumptions help with this, though, as much of what we will do will be
approximate, approximate greedi�cation should be su�cient for most of the time. From
this perspective, that greedy actions may not exist is just annoyance.

Finally, when either the state or action space is uncountably in�nite, one has to be careful
even with the de�nition of policies. Using a technical term from probability theory, a
choice that makes thing work is to restrict policies to be probability kernels. Using this
de�nition means that we need to put measurability structures over both the state and
action spaces (this is only crucial when either respective set has a larger than countable
cardinality). The main change here is that with policies de�ned this way, for any 
measurable subset of ,  must be measurable. This allows us then the use
of the Ionescu-Tulcea theorem and at least the de�nitions can be made to work. The next
di�culty in this case is that “greedi�cation” may lead to outside of the set of these
“measurable policies”, which could prevent the existence of optimal policies (again, if we

∫ f(τ(ω))P(dω) = ∫ f(τ(ω))P′(dω) E E′

P P
′

E[f(τ)] = E
′[f(τ)]

(Ω, F , P)

Other types of MDPs

In�nite spaces anyone?

vπ v∗

ra(s) = 1 − 1/a a > 0

U

A ht ↦ πt(U |ht)
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are contend with approximate optimality, this di�culty disappears). There is a large
literature concerned with these issues.

Since trajectories are allowed to be in�nitely long, we have a nonconstructive result only
for the existence of the probability measures induced by the interconnection of policies
and MDPs. Oftentimes we need to check whether two probability measures over these
in�nitely long trajectories coincide. How can this be done? A general result from measure
theory says that two measures agree, if they agree of a generator of the underlying -
algebra. A convenient generator system for the -algebra over the trajectories (for the
canonical probability space) is the system whose elements take the form

and

for some . That is, if  and  agree on the probabilities assigned to
these sets, they agree everywehere. This makes things a full circle: what this result says is
that we only need to check the probabilities assigned to �nite pre�xes of the in�nitely
long trajectories. Phew. Since the probabilities assigned to these �nite pre�xes are a
function of ,  and  alone, it follows that there is a unique probability measure over
the trajectory space  that satis�es the requirements postulated in the existence
theorem. That is, the canonical probability space is uniquely de�ned.

We learned that the value function can be represented as 
. Thus, maximizing the value function for a given

initial distribution  is equivalent to maximizing the dot product between  and . Next,

we present a concrete example and point out some interesting results.

To keep this example as simple as possible, we introduce some new notation. Let 
represent the set of actions admissable to the state . We now de�ne the MDP. Let 

,  and . Also, let

From in�nite trajectories to their �nite pre�xes

σ

σ

{s0} × {a0} × ⋯ × {st} × A × (S × A)N

{s0} × {a0} × ⋯ × {st} × {at} × (S × A)N

s0, a0, … , st, at, … P P′

μ P π

(S × A)N

Optimization with (Discounted) Occupancy Measures

vπ(μ) = ∑s,a ra(s)νπ
μ(s, a) = ⟨νπ

μ , r⟩

μ νπ
μ r

A(s)
s ∈ S

S = {s1, s2} A(s1) = {a1, a2} A(s2) = {a3}

Pa1(s1, s1) = 1, ra1(s1) = 1
Pa2(s1, s2) = 1, ra2(s1) = 1/2
Pa3(s2, s2) = 1, ra3(s2) = 1/2.
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Our policy  can be parametrized by one parameter  as

Finally, we assume .

We explicitly write out  for all state-action pairs.

Recall, our goal is to maximize . To do this we plug in the above

quantities for  and 

Noting that the function on the right hand side is monotone increasing for , so
we get that the above quantity is maximized for .

Thus, the optimal policy is

π p

π(a1|s1) = p

π(a2|s1) = 1 − p

π(a3|s2) = 1.

μ(s1) = 1

νπ
μ(s, a) = ∑∞

t=0 γ
tPπ

μ(St = s,At = a)

νπ
μ(s1, a1) =

∞

∑
t=0

γ tpt+1

= p
∞

∑
t=0

(γp)t

=
p

1 − γp

νπ
μ(s1, a2) =

∞

∑
t=0

γ tpt(1 − p)

= (1 − p)
∞

∑
t=0

(γp)t

=
1 − p

1 − γp

νπ
μ(s2, a3) =

1

1 − γ
−

p

1 − γp
−

1 − p

1 − γp

∑s,a ra(s)νπ
μ(s, a)

ra(s) νπ
μ(s, a)

∑
s,a

ra(s)νπ
μ(s, a) =

1 − p

1 − γp
+

1

2
(

p

1 − γp
) +

1

2
(

1

1 − γ
−

p

1 − γp
−

1 − p

1 − γp
)

=
1

2
(

p

1 − γp
) +

1

2
(

1

1 − γ
).

p ∈ [0, 1]
p = 1

( | )
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Which, aligns with our intuition that action  should always be selected in state  since
it produces larger reward. Notice how the set of occupancy measures

is a convex set. This examples shows that optimizing in the space of occupancy measures
could be a linear optimization while optimizing with a policy parametrization could be a
non-linear optimization.

I think I have seen Bertsekas and Shreve call the theorem I call fundamental also by the
same name. However, this is not quite a standard name. Nevertheless, the result is
important and many other things follow from it. In a way, this is the result that is at the
heart of all the theory. I think it deserves this name. I have probably read the proof
presented here somewhere, but this was a while ago and the source escapes me. In the RL
literature people often start with memoryless policies and work with  rather than with 

. The question whether  is well-studied and understood, mostly in the control
and operations research literature.

An alternative way of seeing the fundamental theorem is as a result concerning the
geometry of the space of value functions. Indeed, �x an MDP  and let 

, while let 
. The set  is the set of

all value functions of . Both sets are subsets of . Using terminology from
multicriteria optimization, the optimal value function, , is the ideal point of : 

 for all . Then, the fundamental theorem states that the
ideal point of  belongs to :  and in fact . However, more is known
about :

Theorem (existence theorem): Fix a �nite MDP . Then  is convex.
Furthermore, any extreme point of  belongs to .

π(a1|s1) = 1
π(a2|s1) = 0
π(a3|s2) = 1.

a1 s1

{(t, (1 − γt − t), 1/(1 − γ) − t − (1 − γt − t)) : t ∈ [0, 1/(1 − γ)]}

Fundamental Theorem

~v∗

v∗ ~v∗ = v∗

The geometry of the space of value functions

M

V = {vπ : π is a policy of M}
V DET = {vπ : π is a deterministic memoryless policy of M} V

M R
S

v∗ V

v∗(s) = sup{v(s) : v ∈ V} s ∈ S

V V v∗ ∈ V v∗ ∈ V
DET

V

M V ⊂ RS

V V
DET



5/16/22, 11:21 PM 2. The Fundamental Theorem - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec2/ 18/19

This result is due to Dadashi et al. (2019).

This theorem can be found in Appendix A.1 of my short RL book (Szepesvári, 2010).
However, of course, it can be found in many places (the Wikipedia article is also OK). It is
worthwhile to spend some time with this theorem to understand its conditions, going
back to concepts like Cauchy-sequences (which should perhaps be called sequences with
vanishing oscillations) and completeness of the set of real numbers.

The references mentioned before:

Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis lectures on
arti�cial intelligence and machine learning, 4(1), 1-103.

The next work (a book chpater) gives a concise yet relatively thorough introduction. The
chapter also gives a proof of the fundamental theorem; through the su�ciency of Markov
policies. This is done for the discounted and also for a number of alternate criteria.

Garcia, Frédérick, and Emmanuel Rachelson. 2013. “Markov Decision Processes.” In
Markov Decision Processes in Arti�cial Intelligence, 1–38. Hoboken, NJ USA: John
Wiley & Sons, Inc.

A summary of basic results for countable and Borel state-space, and Borel action spaces,
with potentially unbounded (from below) reward functions can be found in the next
(excellent) paper, which also gives a concise overview of the history of these results:

Feinberg, Eugene A. 2011.
Total Expected Discounted Reward MDPS: Existence of Optimal Policies. In Wiley
Encyclopedia of Operations Research and Management Science. Hoboken, NJ, USA:
John Wiley & Sons, Inc.

An argument showing the fundamental theorem for the �nite-horizon case derived from
a general result of David Blackwell can be found in a blog-post of Maxim Raginsky, who
gives further pointers, most notable this. David Blackwell has contributed in numerous
ways to the foundations of statistics, decision theory, probability theory, and many many
other subjects and the importance of his work cannot be overstated.

Banach’s �xed point theorem

References

•

•

•

•
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Robert Dadashi, Adrien Ali Taïga, Nicolas Le Roux, Dale Schuurmans, Marc G.
Bellemare. 2019. The Value Function Polytope in Reinforcement Learning. ICML. arXiv
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RL Theory

Planning in MDPs / 3. Value Iteration and Our First Lower Bound

Last time, we discussed the Fundamental Theorem of Dynamic Programming, which then
led to the e�cient “value iteration” algorithm for �nding the optimal value function. And
then we could �nd the optimal policy by greedifying w.r.t. the optimal value function. In
this lecture we will do two things:

In the previous lecture we found that the iterative computation that starts with some 
 and then obtains  using the “Bellman update”

leads to a sequence  whose th term approaches , the optimal value function, at
a geometric rate:

While this is reassuring, our primary goal is to obtain an optimal, or at least a near-
optimal policy. Since any policy that is greedy with respect to (w.r.t)  is optimal, a
natural idea is to stop the value iteration after some �nite number of iteration steps and
return a policy that is greedy w.r.t. the approximation of  that was just obtained. If we
stop the process after the th step, this de�nes a policy  such that  is greedy w.r.t. : 

. The hope is that as  approaches , the policies  will also get better
in the sense that  decreases.

The next theorem guarantees that this will indeed be the case.

3. Value Iteration and Our First Lower
Bound

Elaborate more on the the properties of value iteration as a way of obtaining near-
optimal policies;

1

Discuss the computational complexity of planning in �nite MDPs.2

Finding a Near-Optimal Policy using Value Iteration

v0 ∈ R
S vk+1

vk+1 = Tvk (1)

{vk}k≥0 k v∗

∥vk − v∗∥∞ ≤ γk∥v0 − v∗∥∞ . (2)

v∗

v∗

k πk πk vk
Tπk

vk = Tvk vk v∗ {πk}
∥v∗ − vπk∥∞
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Theorem (Policy Error Bound): Let  be arbitrary and  be the greedy policy
w.r.t. : . Then,

In words, the theorem states that the policy error ( ) of a policy that is greedy
with respect to a function  is controlled by the distance of  to . This can also be seen as
stating that the “greedy operator” , which maps functions  to a policy that is
greedy w.r.t. , is continuous at  when the “distance”  between policies 

 is de�ned as the maximum norm distance between their value functions: 

. Indeed, with the help of this notation, an alternative form of the
theorem statement is that for any ,

In words, this can be described as that  is is “ -smooth” at 
when the input space is equipped with the maximum norm distance and the output space
is equipped with . One can also show that this result is sharp in that the constant 

 cannot be improved.

The proof is an archetypical example of proofs of using contraction and monotonicity
arguments to prove error bounds. We will see variations of this proof many times. Before
the proof, let us introduce the notation  for a vector  to mean the componentwise
absolute value of the vector: , .

As a way of using this notation, note that for any memoryless policy , 

and hence 

In Eq.  the �rst inequality follows because  is monotone and . For
the proof it will also be useful to recall that we also have

v : S → R π

v Tπv = Tv

vπ ≥ v∗ −
2γ∥v∗ − v∥∞

1 − γ
1.

∥v∗ − vπ∥∞

v v v∗

Γ v ∈ R
S

v v = v∗ d(π,π′)
π,π′

d(π,π′) = ∥vπ − vπ
′
∥∞

v ∈ R
S

d(Γ(v∗), Γ(v)) ≤
2γ∥v∗ − v∥∞

1 − γ
.

v ↦ Γ(v) 2γ/(1 − γ) v = v∗

d

2γ/(1 − γ)

|x| R
d

|x|i = |xi| i ∈ [d]

π

|Pπx| ≤ Pπ|x| ≤ ∥x∥∞Pπ1 = ∥x∥∞1 , (3)

∥Pπx∥∞ ≤ ∥x∥∞ . (4)
(3) Pπ x ≤ |x| ≤ ∥x∥∞1

Tπ(v + c1) = Tπv + cγ1 ,
T (v + c1) = Tv + cγ1 ,

(5)
(6)
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for any ,  and memoryless policy . These two identities follow just by the
de�nitions of  and , as the reader can easily verify them.

Proof: Let  be as in the theorem statement and let . Let 
. The result follows by algebra once we prove that .

Hence, we only need to prove this inequality.

By our assumptions on  and , . Now,

Taking the (pointwise) absolute value of both sides and using the triangle inequality, and
then Eq.  we �nd that  The proof is �nished by taking the
maximum over the components, noting that . 

An alternative way of �nishing the proof is to note that from , by
reordering and using that  is a monotone operator, 

. Taking the max-norm of both sides, we get 

.

From Eq.  we see for , started with , value iteration

yields  such that  and consequently, for a policy  that is greedy w.r.t. 

, . Now, for a �xed  setting  so that  holds, we see that

after  iterations, we get a -optimal policy : . Computing 

 using  takes  elementary arithmetic (and logic) operations. Putting
things together we get the following result:

v ∈ R
S c ∈ R π

T Tπ

v, v∗,π ε = ∥v∗ − v∥∞

δ = v∗ − vπ ∥δ∥∞ ≤ γ∥δ∥∞ + 2γε

v v∗ −ε1 ≤ v∗ − v ≤ ε1

δ = v∗ − vπ

= Tv∗ − Tπv
π (Fundamental Theorem, Tπv

π = vπ)
≤ T (v + ε1) − Tπv

π (T  monotone)
= Tv − Tπv

π + γε1 (Eq. (6))
= Tπv − Tπv

π + γε1 (π def.)
≤ Tπ(v∗ + ε1) − Tπv

π + γε1 (Tπ monotone)
= Tπv

∗ − Tπv
π + 2γε1 (Eq. (5))

= γPπ(v∗ − vπ) + 2γε1 (Tπ def.)
= γPπδ + 2γε1 . (δ def.)

(4) |δ| ≤ γ∥δ∥∞1 + 2γε1 .
maxs |δ|s = ∥δ∥∞ ■

δ = γPπδ + 2γε1
(I − γPπ)−1 = ∑i≥0 γ

iP i
π

δ ≤ 2γε∑i≥0 γ
iPπ1 = 2γε/(1 − γ)1

∥δ∥∞ ≤ 2γε/(1 − γ)

Value Iteration as an Approximate Planning Algorithm

(2) k ≥ Hγ,ε =
ln(1/(ε(1−γ)))

1−γ
v0 = 0

vk ∥vk − v∗∥∞ ≤ ε πk

vk vπk ≥ v∗ − 2γε
1−γ

1 δ > 0 ε δ = 2γε
1−γ

k ≥ H
γ, δ(1−γ)

2γ
δ πk vπk ≥ v∗ − δ1

vk+1 (1) O(S2A)



5/16/22, 11:21 PM 3. Value Iteration and Our First Lower Bound - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 4/12

Theorem (Runtime of Approximate Planning with Value Iteration): Fix a �nite
discounted MDP and a target accuracy . Then, after

elementary arithmetic operations, value iteration produces a policy  that is -optimal: 

, where the  result holds when  is �xed and  hides a 
 term.

Note that the number of operations needed depends very mildly on the target accuracy.
However, accuracy here means an additive error. While the optimal value could be as high
as , it can easily happen that the best value that can be achieved, , is
signi�cantly smaller than . It may be for example that , in which
case a guarantee with  is vacuous.

By a careful inspection of  we can improve the previous result so that this problem is
avoided:

Theorem (Runtime when Controlling for the Relative Error): Fix a �nite discounted
MDP and a target accuracy . Then, stopping value iteration after 

iterations, the policy  produced satis�es the relative error bound

while the total number of elementary arithmetic operations is

where  hides .

Notice that the runtime required to achieve a �xed relative accuracy appears to be the
same as the runtime required to achieve the same level of absolute accuracy. In fact, the

δ > 0

O(S2AH
γ, δ(1−γ)

2γ
) =

~
O(

S2A

1 − γ
ln(

1

δ
))

π δ

vπ ≥ v∗ − δ1
~
O(⋅) δ ≤ 1/e

~
O(⋅)

log(1/(1 − γ))

1/(1 − γ) ∥v∗∥∞

1/(1 − γ) ∥v∗∥∞ = 0.01
δ = 0.5

(2)

δrel > 0 k ≥ H
γ,

δrel
2γ

π

vπ ≥ v∗ − δrel∥v
∗∥∞1 ,

O(S2AH
γ,

δrel
2γ
) =

~
O(

S2A

1 − γ
ln(

1

δrel
))

~
O(⋅) log(1/(1 − γ))
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runtime slightly decreases. This should make sense: The worst-case for the �xed absolute
accuracy is when , and in this case the relative accuracy is
signi�cantly less demanding: With , value iteration can stop after guaranteeing
values of , which, as a value, is much smaller than , the target
with the absolute accuracy level of .

Note that the relative error bound is not without problems either: It is possible that for
some states ,  is negative, a vacuous guarantee. A reasonable stopping
criteria would be to stop when the policy that we read out satis�es

Since  is not available, to arrive at a stopping condition that can be veri�ed and which
implies the above inequality, one can replace  above with an upper bound on it, such as 

. In this imagined procedure, in each iteration, one also needs
to compute the value function of policy  to verify whether the stopping condition is
met. If we do this much computation, we may as well replace  with  in the update
equation  hoping that this will further speed up convergence. This results in what is
known as policy iteration, which is the subject of the next lecture.

Now that we have our �rst results for the computation of approximately optimal policies,
it is time to ask whether the algorithm we discovered is doing unnecessary work. That is,
what is the minimax computational cost of calculating an optimal, or approximately
optimal policy?

To precisely formulate this problem, we need to specify the inputs and the outputs of the
algorithms considered. The simplest setting is when the inputs to the algorithms are
arrays, describing the transition probabilities and the rewards for each state action pair
with some ordering of state-action pairs (and next states in the case of transition
probabilities). The output, by the Fundamental Theorem, can be a memoryless policy,
either deterministic or stochastic. To describe such a policy, the algorithm could write a
table. Clearly, the runtime of the algorithm will be at least the size of the table that needs
to be written, so the shorter the output, the better the runtime can be. To be nice with the
algorithms, we should allow them to output deterministic policies. After all, the
Fundamental Theorem also guarantees that we can always �nd a deterministic
memoryless policy which is optimal. Further, greedy policies can also be chosen to be
deterministic, so the value-iteration algorithm would also satisfy this requirement. The

∥v∗∥∞ = 1/(1 − γ)
δrel = 0.5

0.5/(1 − γ) 1/(1 − γ) − 0.5
δ = 0.5

s v∗(s) − δrel∥v
∗∥∞

vπk ≥ (1 − δrel)v
∗ .

v∗

v∗

vk + γk∥vk∥∞/(1 − γk)1
πk

vk vπk

(1)

The Computational Complexity of Planning in MDPs
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shortest speci�cation for a deterministic policy is an array of the size of the state space
that has  entries.

Thus, the runtime of any algorithm that needs to “produce” a fully speci�ed policy is at
least .

This is quite bad! As was noted before, , the number of states, in typical problems is
expected to be gigantic. But by this easy argument we see that if we demand algorithms to
produce fully speci�ed policies then without any further help, they have to do as much
work as the number of states. However, things are a bit even worse.

In Homework 0, we have seen that no algorithm can �nd a given value in an array without
looking at all entries of the array (curiously, we saw that if we allow randomized
computation, that on expectation it is enough to check half of the entries).

Based on this, it is not hard to show the following result:

Theorem (Computation Complexity of Planning in MDPs):

Let . Any algorithm that is guaranteed to produce -optimal policies in
any �nite MDP described with tables, with a �xed discount factor  and rewards
in the  interval needs at least  elementary arithmetic operations on some
MDP with the above properties and whose state space is of size  and action space is of
size .

Proof sketch: We construct a family of MDPs such that no matter the algorithm, the
algorithm will need to perform the said number of operations in at least one of the MDPs.

One-third of the states is reserved for “heaven”, one-third is reserved for “hell” states.
The remaining one-third set of states, call them , is where the algorithms will need to
make some nontrivial amount of work. The MDPs are going to be deterministic. In the
tables given to the algorithms as input, we (conveniently for the algorithms) order the
states so that the “hell” states come �rst, followed by the “heaven” states, followed by
the states in .

In the “heaven” class, all states self-loop under all actions and give a reward of one. The
optimal value of any of these states is . In the “hell” class, states also self-loops

S

Ω(S)

S

0 ≤ δ < γ/(1 − γ) δ

0 ≤ γ < 1
[0, 1] Ω(S2A)

S
A

R

R

1/(1 − γ)
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under all actions but give a reward of zero. The optimal value of these states is . For the
remaining states, all actions except one lead to some hell state, while the chosen special
action leads to some state in the heaven class.

The optimal value of all states in set  have a value of  and the value of a policy
that in a state in  does not choose the special optimal action gets the value of  in that
state. It follows that any algorithm that is guaranteed to be  optimal needs to identify the
unique optimal action at every state in .

In particular, for every state  and action , the algorithm needs to read 
entries of the transition probability vector  or it can’t �nd out whether  leads to a
state in the heaven class or the hell class: The probability vector  will have a single
one at such an entry, either among the  entries representing the hell, or the 
entries representing the heaven states. By the aforementioned homework problem, any
algorithm that needs to �nd this “needle” requires to check  entries. Since the
number of states in  is also , we get that the algorithm needs to do 

 work. 

We immediately see two di�erences between the lower bound and our previous upper
bound(s): In the lower bound there is no dependence on  (the e�ective horizon
at a constant precision). Furthermore, there is no dependence on , the inverse
accuracy.

As it turns out, the dependence on  of value-iteration is super�uous and can be
removed. The algorithm that achieves this is policy iteration, which was mentioned
earlier. However, this result is saved for the next lecture. After this, the only remaining
gap will be the order of the polynomials and the dependence on , which is
closely related to the said polynomial order.

And of course, we save for later the most pressing issue that we need to somehow be able
to avoid the situation when the runtime depends on the size of the state space (forgetting
about the action space for a moment). By the lower bound just presented we already know
that this will require changing the problem setting. Just how to do this will be the core
question that we will keep returning to in the class.

The idea of value iteration is probably due to Richard Bellman.

0

R γ/(1 − γ)
R 0

δ

R

s ∈ R a ∈ A Ω(S)
Pa(s) a

Pa(s)
S/3 S/3

Ω(S)
R Ω(S)

Ω(S × A)S) = Ω(S2A) ■

1/(1 − γ)
1/δ

1/δ

1/(1 − γ)

Notes

Value iteration
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This theorem is due to Singh & Yee, 1994.

The example that shows that the result stated in the theorem is tight. Consider an MDP
with two states, call them  and , two actions, and deterministic dynamics. Call the two
actions  and . Regardless the state where it is used, action  makes the next state transit
to state , while giving a reward of . Analogously, action  makes the next state transit
to state , while giving a reward of . The optimal values in both states are .
Let  be so that , while . Thus,  underestimates the
value of , while it overestimates the value of state . It is not hard to see that the policy 

 that uses action  regardless the state is greedy with respect to  (actually, the action-
values of the two actions tie at both states). The value function of this policy assigns the
value of  to both states, showing that the result stated in the theorem is indeed tight.

The last theorem is due to Chen and Wang (2017), but the construction is also
(unsurprisingly) similar to one that appeared in an earlier paper that studied query
complexity in the setting when the access to the MDP is provided by a simulation model.
In fact, we will present this lower bound later in a lecture where we study batch RL.
According to this result, the query-complexity (also known as sample-complexity) of
�nding a -optimal policy with constant probability in discounted MDPs accessible
through a random access simulator, apart from logarithmic factors, is , where 

.

We already saw that in order to just clearly de�ne the computational problems (which is
necessary for being able to talk about lower bounds), we need to be clear about the inputs
(and the outputs). The table representation of MDPs is far from being the only possibility.
We just mentioned the “simulation model”. Here the algorithm “learns” about the MDP
by issuing next state and reward queries to the simulator at some state-action pair 
of its choice to which the simulator responds with a random next state (drawn fresh) and
the . Interestingly, this can provably reduce the number of queries compared to the
table representation.

Another alternative, which still keeps tables, is to give the algorithm a cumulative
probability representation. In this representation, the states are identi�ed with 
as before but instead of giving the algorithm the tables  for �xed 

, the algorithm is given

Error bound for greedi�cation

A B

a b a

A 2γϵ b

B 0 2γε/(1 − γ)
v v(A) = v∗(A) − ϵ v(B) = v∗(B) + ϵ v

A B

π b v

0

Computational complexity lower bound

δ

SAH 3/δ2

H = 1/(1 − γ)

Representations matter

(s, a)

ra(s)

1, … , S
[Pa(s, 1), … ,Pa(s, S)]

(s, a)

[ ( ) ( ) ( ) ]
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(the last entry could be saved, because it is always equal to one, but in the grand scheme
of things, of course, this does not matter). Now, it is not hard to see that if the original
probability vector had a single one and zeroes everywhere else, the “needle in the
haystack problem” used in the lower bound, with the integral representation above, a
clever algorithm can �nd the entry with the one with at most  queries. As it
turns out, with this representation, the query complexity (number of queries required) of
producing a good policy can indeed be reduced from the quadratic dependence on the size
of the state-space to a log-linear dependence. Hence, we see that the input representation
crucially matters. Chen and Wang (2017) also make this point and they discuss yet
another, “tree” representation, which leads to a similar speedup.

The simulator model assumption addresses the problem that just reading the input may
be the bottleneck. This is not the only possibility. One can imagine various classes of
MDPs that have a short description, which may raise the hope that one can �nd out a good
policy in them without touching each state-action pair. There are many examples of
classes of MDPs that belong to this category. These include

factored MDPs: The transition dynamics have a short, structured (factored)
representation, and the same applies to the reward

parametric MDPs: The transition dynamics and the rewards have a short, parametric
representation. Examples include linear-quadratic regulation (linear dynamics,
quadratic reward, Euclidean state and action spaces, Gaussian noise in the transition
dynamics), robotic systems, various operations research problems.

For factored MDPs one is out of luck: In these, planning is provably “very hard”
(computationally). For linear-quadratic regulation, on the other hand, planning is
“easy”; once the data is read, all one has to do is to solve some algebraic equations, for
which e�cient solution methods have been worked out.

The key idea of the lower bound crucially hinges upon that good algorithms need to
“learn” about their inputs: The number of arithmetic and logic operations of any
algorithm is at least as large as the number of “read” operations it issues. The minimum
number of required read operations to produce an input of some desired property is often
called the problems query complexity and by the above reasoning we see that the
computational complexity is lower bounded by the query complexity. As it happens, query

[Pa(s, 1),Pa(s, 1) + Pa(s, 2), … , 1]

O(log(S))

MDPs with short descriptions

•

•

Query vs. computational complexity
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complexity is much easier to bound than computational complexity in the sense that it is
rare to see computational complexity lower bounds strictly larger than the query
complexity (the exceptions to this come when a “compact” representation of the MDP is
available, such as in the case of factored MDPs). At the heart of query complexity lower
bounds is often the needle in the haystack problem. This seems to be generally true when
the inputs are “deterministic”. When querying results in stochastic (random) outcomes,
multiple queries may be necessary to “reject”, “reduce”, or “�lter out” the noise and
then new considerations appear.

In any case, query complexity is a question about quickly determining the information
crucial to arrive at a good decision early and is in a way about “learning”: Before a table is
read, the algorithm does not know which MDP it faces. Hence, query complexity is
essentially an “information” question and is also sometimes called information
complexity and we can think of query complexity as the most basic information theory
question. This is a bit di�erent though than mainstream information theory, which is
somehow tied up in dealing with reducing the e�ect of random responses (random
“corruptions” of the clean information).

Query complexity is widely studied in a number of communities which, sadly, are almost
entirely disjoint. Information-theory, mentioned above is one of them, though as was
noted, here the problems are often tied to studying the speed of gaining information in
the presence of noise. Besides information theory, there is the whole �eld of information-
based complexity, which has its own journal, multiple books and more. Also notable is the
theory community that studies the complexity of evolutionary algorithms. Besides these,
of course, query complexity made appearances in the optimization literature (with or
without noise), operations research, and of course in the machine learning and statistics
community. In particular, in the machine learning and statistics community, when the
algorithm is just handed over noisy data, “the sample”, one can ask how large this sample
needs to be to achieve some good outcome (e.g., good predictions on unseen data). This
leads to the notion of sample complexity, which is the same as our query complexity
except that the queries are of the “dull”, “passive” nature of “give me the next
datapoint”. As opposed to this, “active learning” refers to the case when the algorithms
themselves control some aspects of how the data is collected.

Everyone after going to a few machine learning conferences or reading their �rst book, or
blog posts would have heard about David Wolpert’s “no-free lunch theorems”. Yet, I �nd

Query complexity everywhere

Free lunches, needles and a bit of philosophy
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that to most people the exact nature (or signi�cance) of these theorems remain elusive.
Everyone heard that these theorem essentially state that “in the lack of bias, all
algorithms are equal” (and therefore there is no free lunch), from which we should
conclude that the only way to choose between algorithms is by introducing bias.

But what does bias means? If one reads these results carefully (and the theory community
of evolutionary computation made a good job of making them accessible) one �nds that
the results are nothing more that describing some corollaries that to �nd a needle in a
haystack (the special entry in a long array), one needs to search the whole haystack (query
almost all entries of the array).

Believers of the power of data like to dismiss the signi�cance of the no-free lunch result
by claiming that it is ridiculous in that it assumes no structure at all. I �nd these
arguments weak. The main problem is that they are evasive. The evasiveness comes from
the reluctance to be clear about what we expect the algorithms to achieve. The claim is
that once we are clear about this, that is, clear about the goals, or just the problem
speci�cation, we can always hunt for the “needle in the haystack” subproblems within
the problem class. This is about �guring out the symmetries (as symmetry equals no
structure) that sneakily appear in pretty much any reasonable problem we think of worth
studying. The only problems that do not have “needle in the haystack” situations
embedded into them are the ones that are not speci�ed at all.

What is the upshot of all this? In a way, the real problem is to be clear about what the
problem we want to solve is. This is the problem that most theoreticians in my �eld
struggle with every day. Just because this is hard, we cannot give up on this before even
starting, or this will just lead to chaos.

As we shall see in this class, how to specify the problem is also at the very heart of
reinforcement learning theory research. We constantly experiment with various problem
de�nitions, tweaking them in various ways, trying to separate hopelessly hard problems
from the easy, but reasonably general ones. Theoreticians like to build a library of various
problem settings that they can classify in various ways, including relating the problem
settings to each other. While algorithm design is the constructive side of RL (and
computer science, more generally), understanding the relationship between the various
problem settings is just as equally important.
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RL Theory

Planning in MDPs / 4. Policy Iteration

In this lecture we

This latter bound is to be contrasted with what we found out about the runtime of value-
iteration in the previous lecture. In particular, value-iteration’s runtime bound that we
discovered previously grew linearly with  where  was the targeted suboptimality level.
This may appear as a big di�erence in the limit of . Is this di�erence real? Is value-
iteration truly inferior to policy-iteration? We will discuss these at the end of the lecture.

Policy iteration starts with an arbitrary deterministic (memoryless) policy . Then, in step 
, the following computations are done:

How do we calculate ? Recall that , for an arbitrary memoryless policy , is the �xed-point
of the operator : . Also, recall that  for any . Thus, 

 is just a linear equation in , which we can solve explicitly. In the context of policy
iteration from this we get

The careful reader will think of why the inverse of the matrix  exist. There are many
tools we have at this stage to argue that the above is well-de�ned. One approach is to note that 

 holds whenever all eigenvalues of the square matrix  lie strictly within

the unit circle on the complex plain (see homework 0). This is known as the von Neumann series
expansion of , but these big words just hide that at the heart of this is the elementary
geometric series formula, , which holds for all , as we have all

learned in high school.

4. Policy Iteration

formally de�ne policy iteration and1

show that with  elementary arithmetic operations, it produces an

optimal policy

2 ~
O(poly(S, A, 1

1−γ
))

log(1/δ)) δ

δ → 0

Policy Iteration
π0

k = 0, 1, 2, …

calculate , and1 vπk

obtain , another deterministic memoryless policy, by “greedifying” w.r.t. .2 πk+1 vπk

vπk vπ π

Tπ vπ = Tπvπ Tπv = rπ + γPπv v ∈ R
S

vπ = Tπvπ vπ

vπk = (I − γPπk
)−1rπk

. (1)

I − γPπk

(I − A)−1 = ∑i≥0 Ai A

I − A

1/(1 − x) = ∑i≥0 xi |x| < 1
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Based on Eq.  we see that  can be obtained with at most  (and in fact with
at most  ) arithmetic and logic operations. In particular, the cost of computing  is 

 (since  is deterministic), the cost of computing , with the table representation of the
MDP and “random access” to the tables, is . Note that all these are independent of the
number of actions.

Computationally, the “greedi�cation step” above just means to compute for each state  an
action that maximizes the one-step Bellman lookahead values w.r.t. . Writing this out, we see
that we need to solve the maximization problem

and store the result as the action that will be selected by . Since we agreed that all these
policies will be deterministic, we may remove a bit of the storage redundancy, if we allow the
algorithm just to store the action chosen by  at every state (and eventually produce the
output in this form), rather than requiring it to produce a probability vector for each state, which
would have a lot of redundant zero entries in it. Correspondingly, we will further abuse notation
and will allow deterministic memoryless policies to be identi�ed with  maps. Thus, 

.

Given , a vector of length , the cost of evaluating the argument of the maximum is .
Thus, the cost of computing the maximum is : This is where the number of actions
appears (in these steps) in the runtime.

Our main result will be a theorem that states that after  iterations, the policy
computed by policy iteration is necessarily optimal (and not only approximately optimal!). The
proof of this result hinges up on two key observations:

The �rst result follows from comparing policy iteration with value iteration. We know that value
iteration converges at a geometric rate regardless of its initialization. Hence, if we can prove that

 then we will be done. In the so-called “policy improvement
lemma”, we will in fact prove a result that implies

which is stronger than the geometric convergence result.

(1) vπk O(S3)
O(S2.373…) rπk

O(S) πk Pπk

O(S2)

s ∈ S

vπk

max
a∈A

ra(s) + γ⟨Pa(s), vπk⟩

πk+1

πk+1

S → A

πk+1 : S → A

vπk S O(S)
O(SA)

~
O(SA/(1 − γ))

Policy iteration converges geometrically1

After every  iterations, it eliminates at least one suboptimal action at some state.2 Hγ,1

∥vπk − v∗∥∞ ≤ ∥T kvπ0 − v∗∥∞

T kvπ0 ≤ vπk , k = 0, 1, 2, … (2)
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Lemma (Geometric Progress Lemma): Let  be memoryless policies such that  is greedy
w.r.t. . Then,

Proof: By de�nition, . We also have . Chaining these, we get

We prove by induction on  that

From this, the result will follow by taking  of both sides.

The base case of induction  has just been established. For the general case, assume that the
required inequality holds for . We show that it also holds for . For this, apply  on
both sides of Eq. . Since  is monotone, we get

Chaining this with Eq. , we get

�nishing the inductive step, and hence the proof. 

The lemma shows that the value functions are monotonically increasing. Applying this lemma 
times starting with  gives Eq.  and this implies the promised result:

Corollary (Geometric convergence): Let  be the sequence of policies produced by policy
iteration. Then, for any ,

Proof: By ,

Hence,

π, π′ π′

vπ

vπ ≤ Tvπ ≤ vπ′
.

Tvπ = Tπ′vπ vπ = Tπvπ ≤ Tvπ

vπ ≤ Tvπ = Tπ′vπ . (3)

i ≥ 1

vπ ≤ Tvπ ≤ T i
π′v

π . (4)

i → ∞

i = 1
i ≥ 1 i + 1 Tπ′

(4) Tπ′

Tπ′vπ ≤ T i+1
π′ vπ .

(3)

vπ ≤ Tvπ = Tπ′vπ ≤ T i+1
π′ vπ ,

■

k

π = π0 (2)

{πk}k≥0

k ≥ 0

∥vπk − v∗∥∞ ≤ γ k∥vπ0 − v∗∥∞ . (5)

(2)

T kvπ0 ≤ vπk ≤ v∗ , k = 0, 1, 2, … .
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Taking componentwise absolute values and then the maximum over the states, we get that

which is the desired statement. In the equality above we used the Fundamental Theorem and in
the last inequality we used that  is a -contraction. 

We now set out to �nish by showing the “strict progress lemma”. The lemma uses the corollary
we just obtained, but it will also require some truly novel ideas.

Lemma (Strict progress lemma): Fix an arbitrary suboptimal memoryless policy  and let 
 be the sequence of policies produced by policy iteration. Then, there exists a state 

 such that for any ,

The lemma shows that after every  iterations, policy iteration eliminates one

action-choice at one state until there remains no suboptimal action to be eliminated. This can
only be continued for at most  times: In every state, at least one action must be optimal.
As an immediate corollary of the progress lemma, we get the main result of this lecture:

Theorem (Runtime Bound for Policy Iteration): Consider a �nite, discounted MDP with rewards
in . Let  be as in the progress lemma,  the sequence of policies obtained by policy
iteration starting from an arbitrary initial policy . Then, after at most 

 iterations, the policy  produced by policy iteration is optimal: 

. In particular, policy iteration computes an optimal policy with at most 

arithmetic and logic operations.

It remains to prove the progress lemma. We start with an identity which will be useful beyond
the proof of this lemma. The identity is called the value di�erence identity and it gives us an
alternate form of the di�erence of values functions of two memoryless policies. Let  be two

memoryless policies. Recalling that , by algebra, we �nd that

v∗ − vπk ≤ v∗ − T kvπ0 , k = 0, 1, 2, … .

∥v∗ − vπk∥∞ ≤ ∥v∗ − T kvπ0∥∞ = ∥T kv∗ − T kvπ0∥∞ ≤ γ k∥v∗ − vπ0∥∞ ,

T γ ■

π0

{πk}k≥0

s0 ∈ S k ≥ k∗ := ⌈Hγ,1⌉ + 1

πk(s0) ≠ π0(s0) .

k∗ =
~
O( 1

1−γ
)

SA − S

[0, 1] k∗ {πk}k≥0

π0

k = k∗(SA − S) =
~
O( SA−S

1−γ
) πk

vπk = v∗ ~
O( S4A+S3A2

1−γ
)

π, π′

vπ′
= (I − γPπ′)−1rπ′
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Introducing

which we can think of the “advantage” of  relative to , we get the following lemma:

Lemma (Value Di�erence Identity): For all memoryless policies ,

Of course, a symmetric relationship also holds.

With this, we are now ready to prove the progress lemma. Note that if  is an optimal
memoryless policy then for any other memoryless policy , . In fact, the reverse
statement also holds: if the above holds for any ,  must be optimal. This makes it 
an ideal target to track the progress that policy iteration makes. We expect this to start at a high
value and decrease as  increases. Note, in particular, that if

for some state  then, by algebra,

which means that . Hence, the idea of the proof is to show that Eq.  holds for
any .

Proof (of the progress lemma): Fix  and  such that  is not optimal. Let  be an
arbitrary memoryless optimal policy. Then, for policy , by the value di�erence identity and
since  is optimal,

where the last inequality follows because  is stochastic and hence monotone and because 
. Our goal is to relate the right-hand side to . Since Eq.  allows us to

relate the right-hand side to , and the value di�erence identity then lets us bring in 
, preparing to use Eq. , we �rst take the max-norm of both sides of the above

vπ′
− vπ = (I − γPπ′)−1[rπ′ − (I − γPπ′)vπ]

= (I − γPπ′)−1[Tπ′vπ − vπ] .

g(π′, π) = Tπ′vπ − vπ ,

π′ π

π, π′

vπ′

− vπ = (I − γPπ′)−1g(π′, π) .

π∗

π g(π, π∗) ≤ 0
π π∗ −g(πk, π∗)

k

−g(πk, π∗)(s0) < −g(π0, π∗)(s0) (6)

s0 ∈ S

rπk(s0)(s0) + γ⟨Pπk(s0), v∗⟩ > rπ0(s0)(s0) + γ⟨Pπ0(s0), v∗⟩

πk(s0) ≠ π0(s0) (6)
k ≥ k∗

k ≥ 0 π0 π0 π∗

πk

π∗

−g(πk, π∗) = (I − γPπk
)(v∗ − vπk) = (v∗ − vπk) − γPπk

(v∗ − vπk) ≤ v∗ − vπk ,

Pπk

v∗ − vπk ≥ 0 −g(π0, π∗) (5)
v∗ − vπ0

−g(π0, π∗) (5)
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inequality, noting that this keeps the inequality by the de�nition of the max-norm. Then, as
planned, we use Eq.  and the value di�erence identity to get

where the last inequality follows by noting that  and thus from the

triangle inequality and because  is a max-norm non-expansion, 
 holds for any .

Now, de�ne  to be the state that satis�es . Since  is
�nite, this exists. Noting that , we get from Eq.  that

Now when , . Since ,  and thus,

which is Eq. , and thus, by our earlier discussion, . The proof is done because
this holds for any . 

Our earlier result on the runtime of value iteration involves a  term which grows
without bounds as , the required precision level, decreases towards zero. However, at this stage
it is not clear whether this extra term is the result of a loose analysis or whether it is a property
of value-iteration.

Can value iteration be guaranteed to �nd an optimal policy with computation which is
polynomial in ,  and the planning horizon , assuming all value functions takes

values in ?

Calling any algorithm that achieves the above strongly polynomial, we see that with this
terminology we can say that policy iteration is strongly polynomial. Note that in the above
de�nition rather than assuming that the rewards lie in , we use the assumption that the
value functions for all policies take values in . This is a weaker assumption, but
checking our proof for the runtime on policy iteration we see that it only needed this
assumption.

(5)

∥g(πk, π∗)∥∞ ≤ ∥v∗ − vπk∥∞ ≤ γ k∥v∗ − vπ0∥∞ = γ k∥(I − γPπ0
)−1(−g(π0, π∗))∥∞

≤
γ k

1 − γ
∥g(π0, π∗)∥∞ , (7)

(I − γPπ0
)−1 = ∑i≥0 γ iP i

π0

Pπ0

∥(I − γPπ0)
−1x∥∞ ≤ 1

1−γ
∥x∥∞ x ∈ R

S

s0 ∈ S −g(π0, π∗)(s0) = ∥g(π0, π∗)(s0)∥∞ S

0 ≤ −g(πk, π∗)(s0) ≤ ∥g(πk, π∗)∥∞ (7)

−g(πk, π∗)(s0) ≤ ∥g(πk, π∗)∥∞ ≤
γ k

1 − γ
(−g(π0, π∗)(s0)).

k ≥ k∗ γ k

1−γ
< 1 π0 ≠ π∗ 0 < ∥g(π0, π∗)∥∞ = −g(π0, π∗)(s0)

−g(πk, π∗)(s0) ≤
γ k

1 − γ
(−g(π0, π∗)(s0)) < −g(π0, π∗)(s0) ,

(6) πk(s0) ≠ π0(s0)
k ≥ k∗

■

Is Value Iteration Inferior?
log(1/δ)

δ

S A 1/(1 − γ)
[0, 1/(1 − γ)]

[0, 1]
[0, 1/(1 − γ)]
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However, as it turns out, value-iteration is not strongly polynomial:

Proposition: There exists a family of MDPs with deterministic transitions, three states, two
actions and value functions for all policies taking values in  such that the worst-
case iteration complexity of value iteration over this set of MDPs to �nd an optimal policy is
in�nite.

Here, iteration complexity means the smallest number of iterations  after which , as
computed by value iteration, is optimal, for any of the MDPs in the family. Of course, an in�nite
iteration complexity also implies an in�nite runtime complexity.

Proof: The MDP is depicted in the following �gure:

The circles show the states with their names in the circles, the arrows with labels  and  show
the transitions between the states as a result of using the actions. The label  shows how
much reward is incurred along a transition. On the �gure,  is not a return, but a free parameter,
which is chosen in the interval  and which will govern the iteration complexity of
value iteration.

We consider value iteration initialized at . It is easy to see that the unique optimal action
at  is , incurring a value of  at this state. It is also easy to see that 

. We will show that value iteration can “hug” action  at state  inde�nitely
as  approaches  from below. For this, just note that  and that 

 for any . Then, a little calculation shows that  as long

as . If we want value iteration to spend more than  iterations, all we have to do is to

choose . 

It is instructive to note how policy iteration avoids the blow-up of the iteration-counts. This
result shows that value-iteration, as far as we are concerned with calculating an optimal policy,
exactly, is clearly inferior to policy iteration. However, we also had our earlier positive result for
value iteration that showed that the cost of achieving -suboptimal policies is at most 
(and polynomial in the remaining quantities).

[0, 1/(1 − γ)]

k πk

a0 a1

r = ⋅
R

[0, γ/(1 − γ)]

v0 = 0

s1 a0 γ/(1 − γ)
π0(s1) = a1 ≠ a0 a1 s0

R γ/(1 − γ) vk(s0) = 0
vk(s2) = γ

1−γ
(1 − γ k) k ≥ 0 πk(s1) = a1

R > vk(s2) k0

R =
v∗(s2)+vk0(s2)

2 < γ/(1 − γ) ■

δ log(1/δ)
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What does this all mean? Should we really care about that value-iteration is not �nite for exact
computation? We have many reasons to not to care much about exact calculations. In the end, we
will do sampling, learning, all of which make exact calculations impossible. Also, recall that our
models are just models: The models themselves introduce errors. Why would we want to care
about exact optimality? In summary:

Exact optimality is nice to have, but approximate computations with runtime growing mildly
with the required precision should be almost equally acceptable.

Yet, it remains intriguing to think of how policy iteration can just “snap” into the right solution
and how by changing just a few lines of code, a drastic improvement in runtime may be possible.
We will keep returning to the question of whether an algorithm has some provable advantage
over some others. When this can be shown, it is a true win: We do not need to bother with the
inferior algorithm anymore. While this is great, remember that all this depends on how the
problems are de�ned. As we have seen before, and we will see many more times, changing the
problem de�nition can drastically change the landscape of what works and what does not work.
And who knows, some algorithm may be inferior in some context, and be superior in some other.

The �rst result that showed that after  arithmetic and logic operations one can

compute an optimal policy is due to Yinyu Ye (2011). This was a real breakthrough of the time.
The theorem we proved is by Bruno Scherrer (2016) and we followed closely his proof. This proof
is much simpler than the �rst one by Yinyu Ye, though the main ideas can be traced back to the
proof of Yinyu Ye.

The example that shows that value iteration is not strongly polynomial is due to Eugene A.
Feinberg, Je�erson Huang and Bruno Scherrer (2014).

More often than one may imagine, two actions may tie for the maximum in the above problem.
Which one to use in this case? As it turns out, it matters only if we want to build a stopping
condition for the algorithm that stops the �rst time it detects that . This stopping
condition takes  operations, so is quite cheap. If we use this stopping condition, we better
make sure that when there are ties, the algorithm resolves them in a systematic fashion,
meaning that it has a �xed preference relation over the actions that it respects in case of ties.
Otherwise, in the case when there are two optimal actions at some state ,  is an optimal
policy,  may choose the optimal action that  did not choose, and then  could choose

Notes

The runtime bound on policy iteration
poly(S, A, 1

1−γ
)

Runtime of value iteration

Ties and stopping

πk+1 = πk

O(S)

s πk

πk+1 πk πk+2
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the same action as  at the same state, etc. and the stopping condition would fail to detect that
all these policies are optimal.

Alternatively to resolving ties systematically one may simply change the stopping condition to
checking whether . The reader is invited to check that this would work. “In practice”,
though, this may be problematic if  and  are computed with �nite precision and
somehow the approximation errors that arise in this calculation lead to di�erent answers. Can
this happen at all? It can! We may have  (with in�nite precision), while 
and . And so with �nite precision calculations, there is no guarantee that
we get the same outcomes in the two cases! The only guarantee that we get with �nite precision
calculations is that with identical inputs, the outputs are identical.

An easy way out, of course, is just to use the theorem above and stop after the number of
iterations is su�ciently large. However, this may be, needlessly, wasteful.

Feinberg, E. A., Huang, J., & Scherrer, B. (2014). Modi�ed policy iteration algorithms are not
strongly polynomial for discounted dynamic programming. Operations Research Letters,
42(6-7), 429-431. [link]

Scherrer, B. (2016). Improved and generalized upper bounds on the complexity of policy
iteration. Mathematics of Operations Research, 41(3), 758-774. [link]

Ye, Y. (2011). The simplex and policy-iteration methods are strongly polynomial for the
Markov decision problem with a �xed discount rate. Mathematics of Operations Research,
36(4), 593-603. [link]

Copyright © 2020 RL Theory.

πk

vπk = vπk+1

vπk vπk+1

vπk = vπk+1 rπk
≠ rπk+1

I − γPπk
≠ I − γPπk+1
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RL Theory

Planning in MDPs / 5. Online Planning - Part I.

In this lecture we

In a previous lecture we have seen that in discounted MDP with  states and  actions, no
algorithm can output a  optimal or better policy with a computation cost less
than  provided that the MDP is given with a table representation. One of the 
factors here comes from that to specify a policy one needs to compute (and output) what
action to take in every state. The additional  factor comes from because to �gure out
whether an action is any good, one needs to read almost all entries of the next-state
distribution vector.

An unpleasant tendency of the world is that if a problem is modelled as an MDP (that is,
the Markov assumption is faithfully observed), the size of the state space tends to blow
up. Bellman’s curse of dimensionality is one reason why this happens. To be able to deal
with such large MDPs, we expect our algorithm’s runtime to be independent of the size
of the state space. However, our lower bound tells us that this is a pipe dream.

But why did we require the planner to output a full policy? And why did we assume that
the only way to get information about the MDP is to read big tables of transition
probabilities? In fact, if the planner is used inside an “agent” that is embedded in an
environment, there is no need for the planner to output a full policy: In every moment,
the planner just needs to calculate the action to be taken in the state corresponding to the
current circumstances of the environment. In particular, there is no need to specify what
action to take under any other circumstances than the current one!

5. Online Planning - Part I.

introduce online planning;1

show that for deterministic MDPs there is an online planner whose runtime per call is
independent of the size of the state space;

2

show that this online planner has in fact a near-optimal runtime in a worst-case
sense.

3

What is Online Planning?
S A

δ ≤ γ/(1 − γ)

Ω(S 2A) SA

S
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As we usually do in these lectures, assume that the environment is an MDP and the agent
gets access to the state in every step when it needs to make a decision. Further, assume
that the agent is lucky to also have access to a simulator of the MDP that describes its
environment. Just think of the simulator as a black box that can be, fed with a state-action
pair and responds with the immediate reward and a random next state from the correct
next-state distribution. One can then perhaps build a planner that uses this black box
with a “few” queries and quickly returns an action, to be taken by the agent, moving the
environment to a random next state, from where the process continues.

Now, the planner does not need to output actions at all states and it does not need to
spend time on reading long probability vectors. Hence, in theory, the obstacles that led to
the lower bound are removed. The question still remains whether in this new situation
planner’s can indeed get away with runtime independent of the size of the state space. To
break the suspense, the answer is yes and it comes very easily for deterministic
environments. For stochastic environments a little more work will be necessary.

In the remainder of this lecture we give a formal problem de�nition for the online
planning problem that was described informally above. Next, the result is explained for
deterministic environments. This result will be matched with a lower bound.

We start with the de�nition of MDP simulators. We use a language similar to that used to
describe optimization problems where one talks about optimization in the presence of
various oracles (zeroth-order, �rst order, noisy, etc.). Because we assume that all MDPs
are �nite, we identify the state and action spaces with subsets of the natural numbers and
for the action set we also require that the action set is  where  is the number of
actions. This simpli�es the description quite a bit.

De�nition (MDP simulator): A simulator implementing an MDP  is a
“black-box oracle” that when queried with a state action pair  returns the
reward  and a random state , where  and .

Users of the black-box must pay attention avoid querying it for state-action pairs outside
of . Our next notion is that of an online planner:

Online Planning: Formal De�nitions

[A] A

M = (S,A, P , r)

(s, a) ∈ S × A

ra(s) S ′ ∼ Pa(s) r = (ra(s))s,a P = (Pa(s))s,a

S × A
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De�nition (Online Planner): An online planner takes as input the number of actions , a
state , an MDP simulator “access point”. After querying this simulator �nitely many
times, the planner needs to return an action from .

(Online) planners may randomize their calculation. Even if they do not randomize, the
action returned by a planner is in general random due to the randomness of the simulator
that the planner uses. A planner is well-formed if no matter what MDP it interfaces with
through a simulator, it returns an action after querying the simulator �nitely many times.
This also means that the planner can never feed the simulator with state-action pair
outside of the set of such pairs.

If an online planner is given access to a simulator of , the planner and the MDP 
together induce a policy of the MDP. We will just refer to this policy as the planner-
induced policy  when the MDP is clear from the context. Yet, this policy depends on the
MDP implemented by the simulator. If an online planner is well-formed, this policy is
well-de�ned no matter the MDP that is implemented by the simulator.

Online planners are expected to produce good policies:

De�nition ( -sound Online Planner): We say that an online planner is -sound if it is
well-formed and for any MDP , the policy  induced by it and a simulator implementing 

 is -optimal in . In particular,

must hold where  is the optimal value function in .

The (per-state, worst-case) query-cost of an online planner is the maximum number of
queries it submits to the simulator where the maximum is over both the MDPs and the
initial states.

The following vignette summarizes the problem of online planning:

Model: Any �nite MDP 

A

s ∈ N

[A]

M M

π

δ δ

M π

M δ M

vπ ≥ v∗ − δ1

v∗ M

M
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Oracle: Black-box simulator of 

Local input: State 

Local output: Action 

Outcome: Policy 

Postcondition:

As an optimization, we let online planners also take as input , the target suboptimality
level.

Recall value iteration:

As we have seen, if the iteration is stopped so that , the policy  de�ned via

is guaranteed to be -optimal. Can this be used for online planning? As we shall see, in a
way, yes. But before showing this, it will be worthwhile to introduce some additional
notation that, in the short term, will save us some writing. More importantly, the new
notation will also be seen to in�uence algorithm design.

The observation is that to decide about what action to take, we need to calculate the one-
step lookahead value of the various actions. Rather than doing this in a separate step as
shown above, we could have as well chosen to keep track of these lookahead values
throughout the whole procedure. Indeed, de�ne  as

where  and the operators  and  are de�ned via

with , , , .

M

s

A

π

vπ
M

≥ v∗
M − δ1

δ

Online Planning through Value Iteration and Action-value
Functions

Let 1 v0 = 0

For  let 2 k = 1, 2, … vk+1 = Tvk

k ≥ Hγ,δ(1−γ)/(2γ) πk

πk(s) = arg max
a

ra(s) + γ⟨Pa(s), vk⟩

δ

~
T : R

S×A → R
S×A

~
Tq = r + γPMq, (q ∈ R

S×A) ,

r ∈ R
S×A P : R

S → R
S×A M : R

S×A → R
S

r(s, a) = ra(s) , (Pv)(s, a) = ⟨Pa(s), v⟩ , (Mq)(s) = max
a∈A

q(s, a)

s ∈ S a ∈ A v ∈ R
S q ∈ R

S×A
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Then the de�nition of  can be shortened to

It is instructive to write the above computation in a recursive, algorithmic form. Let

Using a Python-like pseudocode, our function to calculate the values  looks as
follows:

1. define q(k,s): 

2.  if k = 0 return [0 for a in A] # base case 

3.  return [ r(s,a) + gamma * sum( [P(s,a,s') * max(q(k-1,s')) for s' in S] ) for a in A ] 

4. end 

Line 3, which is where the recursive call happens uses Python’s list comprehensions: the
brackets create lists and the function itself returns a list. This is a recursive function
(since it calls itself in line 3. The runtime is easily seen to be , which is not very
hopeful until we notice that if the MDP was deterministic, that is,  has a single one
entry, and we have a way of looking up which entry is this without going through all the
states, say,  is a function that gives the next states, we can rewrite the above
as

1. define q(k,s): 

2.  if k = 0 return [0 for a in A] # base case 

3.  return [ r(s,a) + gamma * max(q(k-1,g(s,a))) for a in A ] 

4. end 

As in line 3 there is no loop over the next states (no summing up over these), the runtime
becomes

which is the �rst time we see that a good action can be calculated with e�ort regardless of
the size of the state space! And of course, if one is given a simulator of the underlying
MDP, which is deterministic, calling  is the same as calling the simulator (once). But will
this idea extend to the stochastic case? The answer is yes, but the details will be given in
the next lecture. Instead, in this lecture we take a brief look at whether there is any
possibility to do better than the above recursive procedure.

πk

πk(s) = arg max
a

(
~
T k+1

0)(s, a) .

qk =
~
T k

0.

qk(s, ⋅)

(AS)k

P(s, a, ⋅)

g : S × A → S

O(Ak)

g
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Theorem (online planning lower bound): Take any online planner  that is -sound with 
 for discounted MDPs with rewards in . Then there exist some MDPs on which 

uses at least  queries at some state with

where  is the number of actions in the MDP.

Denote by  the value de�ned in . Then, for , .

Proof: This is a typical needle-in-the-haystack argument. We saw in Question 5 on
Homework 0 that no algorithm can �nd out which element of a binary array of length  is
one with less than  queries. Take a rooted regular -ary tree of depth . The tree has
exactly  leafs. Consider an MDP with states corresponding to the nodes of this tree. Call
the root . Let the dynamics be deterministic: Taking an action at a node (of the tree)
makes the next state the child of that node, unless the node is a leaf node, which are
absorbing states: The next state under any action at any leaf state  is  itself. Let all the
rewards be zero except at exactly one of the leaf nodes, where the reward under any action
is set to one.

If a planner is -sound, we claim that it must �nd the optimal action at . This holds
because the value of this action is  and, by our choice of , 
, while the value of any other action at  is zero. It follows that the planner needs to be
able to identify the unique action at the unique leaf node whose reward is one, which, by
Question 5 on Homework 0, needs at least  queries. 

For a fully formal speci�cation the reader may worry about how a state is described to an
online planner, especially, if we allowed uncountably many states. Because the online
planner will only have access to the state that it receives as its input and the other states
that are returned from the simulator, for the purpose of communication between the

Lower Bound

p δ

δ < 1 [0, 1] p

Ω(Ak)

k = ⌈
ln(1/(δ(1 − γ)))

ln(1/γ)
⌉, (1)

A

kγ (1) γ → 1 kγ = Ω(Hγ,δ)

m

Ω(m) A k

Ak

s0

s s

δ s0

∑∞
i=k γ i = γ k/(1 − γ) k γ k/(1 − γ) ≥ δ

s0

Ω(Ak) ■

Notes

Dealing with larger state spaces
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online planner and its environment and the simulator, all these states can just be
assigned unique numbers to identify them.

There is an obvious gap between the lower and the upper bound that should be closed.

Last year’s lecture notes used the expression local planning in place of online planning.
There are pros and cons for both expressions, but perhaps online planning better
expresses that the planner will be used in an online fashion, that is, every time after a
transition happens.

Simulators come in many shapes and forms. A general planner needs to be prepared to be
used in an interconnection with any simulator. But this is too much: Every simulator
provides an interface to the planners and planners need to be designed around these
interfaces. Therefore, planners will be specialized to the speci�c interface used. Here, we
distinguish three types of interfaces based on what access the interface allows to
generating data. The access can be global, local or online.

Global access means that the simulator provides a function that returns a description of
the full state space. For �nite MDPs this would just mean returning the number of states 
. Then, the simulator can be called for any  pair where  and  (the
simulator should also have a function that returns the number of actions, ). Internally,
the simulator then needs to translate the integer indices  and  into appropriate data for
which the simulation can be done. Then, the simulator would generate the next state, and
translate it back to an integer in , which is the data returned from the call. The
simulator should also return the associated reward. Often, the reward would also be
random (in the lecture, we are concerned with deterministic rewards, but this is just done
for the sake of simplicity: random rewards at this stage would not create further
di�culties).

Local access means that the simulator allows the planner to generate transitions starting
only from states that were passed to the planner previously. To implement a local access
simulator, one can just introduce an array that is used to remember all the states that
have been returned to the planner. For the sake of interfacing with the planner, one can
then use the indexing into this array. This way, the planner does not need to know the
details of how states are internally represented and it also becomes possible to interface

Gap between the lower and upper bound

Local planning vs. online planning

On simulators and access modes

S

(s, a) s ∈ [S] a ∈ [A]

A

s a

[S]
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with simulators where the number of states is in�nite, or when it is �nite, but calculating
this number would be impractical or intractable. Of course, the simulator needs the ability
to “go back” to a previously visited state and generate new transition data from there.
This can be usually implemented on the top of existing simulators without much trouble
(the ability to do this is known as “checkpointing”).

Online access simulators have an “internal state”, which the planners can manipulate in
two ways: they can reset this internal state to the initial state (which is provided to the
planner when the planner is called), or they can ask for a transition from the current
internal state, by providing an action. As a result of this, the simulator’s internal state
would move to a random next state, which is what would be returned to the planner
(along with the associated reward).

Clearly, any planner prepared to work with online access, can also be used with simulator
that provide either local access or global access, and any planner prepared to work with
local access can be used with simulators providing global access. In this way, online
access is the most general of the access modes, local access is least general, and global
access is the most restrictive.

Note that even with online access there is the issue that state information about the state
of the environment has to be communicated to the planner in a way that is consistent
with how state information can be passed from the planner to the simulator. To keep
planners general, the environment and the simulator need to work on an appropriate
consistent way of serializing information about the state, which is a pure engineering
issue and can usually be done without much trouble.

“Planning with a generative models” is an alternative, early terminology that is still
used in the literature today. Most commonly, this is means online planning with a global
access simulator. However, as the expression itself is not as easy to adopt to di�erent
situations as described here, we will refrain from using it.

Copyright © 2020 RL Theory.
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RL Theory

Planning in MDPs / 6. online planning - Part II.

In the previous lecture online planning was introduced. The main idea is to amortize the cost of
planning by asking a planner to produce an action to be taken at a particular state so that the policy
induced by repeatedly calling the planner at the states just visited and then using the action returned by
the planner is near-optimal. We have seen that with this, the cost of planning can be made independent
of the size of the state space – at least for deterministic MDPs. For this, one can use just a recursive
implementation of value iteration, which, for convenience, we wrote using action-value functions and
the corresponding Bellman optimality operator, , de�ned by

(in the previous lecture we used  to denote this operator, but to reduce clutter from now on, we will
drop the tilde).

We have also seen that no procedure can do signi�cantly better in terms of its runtime (or query cost)
than this simple recursive procedure. In this lecture we show that these ideas also extend to the
stochastic case.

Assume now that the MDP is stochastic. Recall the pseudocode of the recursive form of value iteration
from the last lecture that computes :

1. define q(k,s): 

2.  if k = 0 return [0 for a in A] # base case 

3.  return [ r(s,a) + gamma * sum( [P(s,a,s') * max(q(k-1,s')) for s' in S] ) for a in A ] 

4. end 

Obviously, the size of the state space creeps in because in line 3 we need to calculate an expected value
over the next state distribution at . As noted beforehand, in deterministic systems when a
simulator is available, the sum over the next-states can be replaced with a single simulator call. But the
reader may remember from Probability 101 that sampling allows one to approximate expected values,
where the error of approximation is independent of the cardinality of the set over which we average
the values. Here, this set is , the state space. This is extremely lucky!

To quantify the size of these errors, we recall Hoe�ding’s inequality:

6. online planning - Part II.

T

Tq(s, a) = ra(s) + γ⟨Pa(s), Mq⟩ .

~
T

Sampling May Save the Day?

(T k
0)(s, ⋅)

(s, a)

S
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Lemma (Hoe�ding’s Inequality): Given  independent, identically distributed (i.i.d.) random
variables that take values in the  interval, for any , with probability at least  it
holds that

Letting  for some state-action pair  and , by this result,
for any , with probability ,

This suggests the following approach: For each state action pair  draw  and
store it in a list . Then, whenever for some function  we need the value of , just use
the sample average

Plugging this approximation into our previous pseudocode gives the following new code:

1. define q(k,s): 

2.  if k = 0 return [0 for a in A] # base case 

3.  return [ r(s,a) + gamma/m * sum( [max(q(k-1,s')) for s' in C(s,a)] ) for a in A ] 

4. end 

The total runtime of this function is now . What is important is that this will give us a
compute time independent of the size of the state space as long as we can show that  can be set
independently of  while meeting our target for the suboptimality of the induced policy.

This pseudocode sweeps under the rug on who creates the lists  and when? A simple and
e�ective approach is to use “lazy evaluation” (or memoization): Create  at the �rst time it is
needed (and do not create it otherwise). An alternative to the approach we follow here is to avoid
storing these lists and just create them on demand. Both procedures are valid, but we will stick to the
procedure that creates the lists only once and will comment on the other approach at the end in the
notes.

m

[0, 1] 0 ≤ ζ < 1 1 − ζ

1

m

m

∑
i=1

Xi − E[X1] ≤ √ log 2
ζ

2m
.∣ ∣S ′

1, … , S ′
m

i.i.d.
∼ Pa(s) (s, a) v : S → [0, vmax]

0 ≤ ζ < 1 1 − ζ

1

m

m

∑
i=1

v(S ′
i) − ⟨Pa(s), v⟩ ≤ vmax

√ log 2
ζ

2m
.∣ ∣ (1)

(s, a) S ′
1, … , S ′

m
i.i.d.
∼ Pa(s)

C(s, a) v ⟨Pa(s), v⟩

1

m
∑

s′∈C(s,a)

v(s′) .

O((mA)k+1)
m

S

C(s, a)
C(s, a)

Good Action-Value Approximations Su�ce
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As a �rst step towards understanding the strength and weaknesses of this approach, let us de�ne 

 by

With the help of this de�nition, when called with state , the planner computes

The conciseness of this formulae, if anything, must please everyone!

Let us now turn to the question of whether the policy  induced by this planners is a good one. We start
with a lemma that parallels our earlier result that bounded the suboptimality of a policy that is greedy
w.r.t. a function over the states as a function of how well the function approximates the optimal value
function. To state the lemma, we need the analog of optimal value functions but with action values.

De�ne

We call this function  the optimal action-value function (in our MDP). The function  is easily seen
to satisfy  and thus also . The promised lemma is as follows:

Lemma (Policy error bound - I.): Let  be a memoryless policy and choose a function 
and . Then, the following hold:

For the proof, which is partially left to the reader, we need to introduce a bit more notation. In
particular, for a memoryless policy, de�ne the operator :

T̂ : R
S×A → R

S×A

(T̂ q)(s, a) = ra(s) +
γ

m
∑

s′∈C(s,a)

max
a′∈A

q(s′, a′) .

s = s0

A = arg max
a∈A

(T̂ H
0)(s0, a)

QH(s0,a)

,


π̂

Suboptimality of -optimizing policiesϵ

q∗(s, a) = ra(s) + γ⟨Pa(s), v∗⟩ .

q∗ q∗

Mq∗ = v∗ q∗ = Tq∗

π q : S × A → R

ϵ ≥ 0

If  is -optimizing in the sense that  holds for every state 
then  is  suboptimal: 

1 π ϵ ∑a π(a|s)q∗(s, a) ≥ v∗(s) − ϵ s ∈ S

π ϵ/(1 − γ) vπ ≥ v∗ − ϵ
1−γ

1 .

If  is greedy with respect to  then  is -optimizing with  and thus2 π q π 2ϵ ϵ = ∥q − q∗∥∞

vπ ≥ v∗ −
2∥q − q∗∥∞

1 − γ
1 .

Mπ : R
S×A → R

S

(Mπq)(s) = ∑
a∈A

π(a|s)q(s, a) , (q ∈ R
S×A, s ∈ S).



5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 4/17

With the help of this operator the condition that  is greedy with respect to  can be written as

Further, the second claim of the lemma can be stated in the more concise form .

For future reference, we will also �nd it useful to de�ne :

Note that here we abused notation as  has already been used to denote the operator that maps
functions of the states to functions of the state. From the context, the meaning of  will always be
clear.

Proof: The �rst part of the proof is standard and is left to the reader. For the second part note that

Then use the �rst part. 

There are two issues that need to be taken care of. One is that the planner is randomizing when
computing the values . What happens when the random next states obtained from the
simulator are not “representative”? We cannot expect the outcome of this randomized computation to
be precise! Indeed, the best we can expect is that the outcome is “accurate” with some probability,
hopefully close to one. In fact, from Hoe�ding’s inequality, we see that if we want to achieve small
errors in the computation for some target probability, we need to increase the sample size. But
Hoe�ding’s inequality, in all cases, allows errors which are uncontrolled on some failure event.

All in all, the best we can hope for is that with each call,  is a good approximation to 
outside of some “failure event”  whose probability we will control separately. Let us say the
probability of  is at most :

Here,  denotes the probability measure induced by the interaction of the planner and the MDP
simulator on an appropriate probability space. We will choose  so that on , the complementer of 
(a “good” event), it holds that

Then, on ,

That is, on the good event , the action  returned by the planner is  optimizing at state .

Let  denote the probability that action  returned by the planner is : .
Then,

π q

Mπq = Mq .

Mπq∗ ≥ v∗ − 2ϵ1

Pπ : R
S×A → R

S×A

Pπ = PMπ .

Pπ

Pπ

Mπq∗ ≥ Mπ(q − ϵ1) = Mπq − ϵ1 = Mq − ϵ1 ≥ M(q∗ − ϵ1) − ϵ1 = Mq∗ − 2ϵ1 = v∗ − 2ϵ1 .

■

Suboptimality of almost -optimizing policiesϵ

QH(s0, ⋅)

QH(s0, ⋅) q∗(s0, ⋅)
F

F ζ

Ps0(F) ≤ ζ .

Ps0

F F
c

F

δH = ∥QH(s0, ⋅) − q∗(s0, ⋅)∥∞ ≤ ϵ . (2)

F c

q∗(s0, A) ≥ QH(s0, A) − ϵ = max
a

QH(s0, a) − ϵ ≥ max
a

(q∗(s0, a) − ϵ) − ϵ = v∗(s0) − 2ϵ .

F
c A 2ϵ s0

π̂(a|s0) A a π̂(a|s0) = Ps0(A = a)

∑
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In words, with probability at least ,  chooses -optimizing actions: The policy is almost -
optimizing. While this is not as good as always choosing -optimizing actions, we expect that as 

 the di�erence in performance between  and a policy that always chooses -optimizing actions
disappears because performance is expected to depend on action probabilities in a continuous fashion.
The next lemma makes this precise:

Lemma (Policy error bound II): Let ,  be a memoryless policy that selects -optimizing
actions with probability at least  in each state. Then,

Proof: By Part 1 of the previous lemma, it su�ces to show that  is -optimizing in every
state. This follows from algebra and is left to the reader. 

What remains is to show that with high probability, the error , de�ned in  is small. Intuitively, 

. To �rm up this intuition, we may note that for any �xed  function over the state-
action pairs such that  and for any �xed , by Eq.  and the choice of the

sets , with probability ,

where, for brevity, we introduced  in the above formula.

∑
a

π̂(a|s0)I(q∗(s0, a) ≥ v∗(s0) − 2ϵ)

= Ps0(q∗(s0, A) ≥ v∗(s0) − 2ϵ)
= Ps0(q∗(s0, A) ≥ v∗(s0) − 2ϵ,F c) + Ps0(q∗(s0, A) ≥ v∗(s0) − 2ϵ,F)
≥ Ps0(q∗(s0, A) ≥ v∗(s0) − 2ϵ,F c)
= Ps0(F

c)
≥ 1 − ζ .

1 − ζ π̂ 2ϵ 2ϵ

2ϵ

ζ → 0 π̂ 2ϵ

ζ ∈ [0, 1] π ϵ

1 − ζ

vπ ≥ v∗ −
ϵ + 2ζ∥q∗∥∞

1 − γ
1 .

π ϵ + 2ζ∥q∗∥∞

■

Error control
δH (2)

T̂ ≈ T q ∈ R
S×A

∥q∥∞ ≤ 1
1−γ

(s, a) ∈ S × A (1)

C(s, a) 1 − ζ

|T̂ q(s, a) − Tq(s, a)| = γ
1

m
∑

s′∈C(s,a)

v(s′) − ⟨Pa(s), v⟩ ≤ γ∥q∥∞
√ log 2

ζ

2m

≤
γ

1 − γ
√ log 2

ζ

2m
=: Δ(ζ, m),∣ ∣ (3)

v = Mq

Union bounds
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So we know that for any �xed state-action pair , outside of a low probability event,  is
close to . But can we conclude from this that, outside of some low probability event, 

 is close to  everywhere?

To answer this question, it will be easier to turn it around and just try to come up with some event that,

on the one hand, has low probability, while, in the other hand, outside of this event,  is close
to  regardless of .

Denoting by  the event when  is not close to , i.e.,

it is clear that if  then outside of , none of  holds and hence

But how large can the probability of  be? For this, recall the following elementary result, which follows
directly from the properties of measures:

Lemma (Union Bound): For any probability measure  and any countable sequence of events 
 of the underlying measurable space,

By this result, using that  is �nite,

If we want this probability to be , we can set  and conclude that with probability 
, for any state-action pair ,

The following diagram summarizes the idea of union bounds:

(s, a) (T̂ q)(s, a)
(Tq)(s, a)

(T̂ q)(s, a) (Tq)(s, a)

(T̂ q)(s, a)
(Tq)(s, a) (s, a)

E(s, a) (T̂ q)(s, a) (Tq)(s, a)

E(s, a) = {|(T̂ q)(s, a) − (Tq)(s, a)| > Δ(ζ, m)} ,

E = ∪(s,a)E(s, a) E E(s, a)

max
(s,a)∈S×A

|(T̂ q)(s, a) − (Tq)(s, a)| ≤ Δ(ζ, m) .

E

P

A1, A2, …

P (∪iAi) ≤ ∑
i

P(Ai).

S × A

P(E) ≤ ∑
(s,a)∈S×A

P(E(s, a)) ≤ SAζ .

0 ≤ ζ ′ ≤ 1 ζ = ζ ′

SA
1 − ζ ′ (s, a) ∈ S × A

|(T̂ q)(s, a) − (Tq)(s, a)| ≤ Δ(
ζ ′

SA
, m) =

γ

1 − γ
√ log 2SA

ζ ′

2m
. (4)
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To control the error of some bad event happening, we can break the the bad event into a number of
elementary parts. By controlling the probability of each such part, we can control the probability of the
bad event, or, alternatively, control the probability of the complementary “good” event. The worst case
for controlling the probability of the bad event is if the elementary parts do not overlap, but the
argument of course works even in this case.

Returning to our calculations, from the last formula we see that the errors grew a little compared to ,
but the growth is modest: the errors scale with the logarithm of the number of state-action pairs. While
this logarithmic error-growth is mild, it is unfortunate that the number of states appears here. To
control the errors, by this formulae we would need to choose  to be proportional to the logarithm of
the size of the state space, which is better than a linear dependence, but still. One must wonder whether
this dependence is truly necessary? If it was, there would be a big gap between the complexity of
planning in deterministic and stochastic MDPs. We should not give in for this just yet!

The key to avoiding the dependence on the cardinality of the state is to avoid taking union bounds over
the whole state-action set. That this may be possible follows from that, thinking back to the recursive
implementation of the planner, we can notice that the planner does not necessarily rely on all the sets 

.

To get a handle on this, it will be useful to introduce a notion of a distance induced by the set 
 between the states. This distance between states  and  (denoted by )

will be the smallest number of steps that we can take to get from  to , if in each step we choose one
“neighbouring” state to the last state, starting from state . Formally, this is the length  of the
shortest sequence  such that ,  and for each ,  (this is
the distance between states in the directed graph over the states with edges induced by ).

With this, for , de�ne

(3)

m

Avoiding dependence on state space cardinality

C(s, a)

C(s) := ∪a∈AC(s, a) s s′ dist(s, s′)
s s′

s n

s0, s1, … , sn s0 = s sn = s′ i ∈ [n] si ∈ C(si−1)
C

h ≥ 0

Sh = {s ∈ S| dist(s0, s) ≤ h}
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as the set of states accessible from  by at most  steps. Note that this is a nested sequence of sets and 
,  contains  and its immediate “neighbors”, etc.

We may now observe that in the calculation of  when function  is called with a certain value
of , for the state that appears in the call we have

This can be proved by induction on , starting with .

Click here for the proof.

Taking into account that when  is called with , the sets  are not used (line 2), we see that
only states  from  are such that the calculation ever uses the set . Since ,

and in particular, , which is independent of the size of the state space. Of course, all
along, we knew this very well: This is why the total runtime is also independent of the size of the state
space.

The plan is to take advantage of this to avoid a union bound over all possible state-action pairs. We
start with a recursive expression for the errors.

Recall that . By the triangle inequality,

Now, observing that

we see that

In particular, de�ning

we see that

s0 h

S0 = s0 S1 s0

QH(s0, ⋅) q

0 ≤ k ≤ H

s ∈ SH−k .

k k = H

q k = 0 C(s, a)
s SH−1 C(s, a) |C(s, a)| = m

Sh ≤ 1 + (mA) + ⋯ + (mA)h ≤ (mA)h+1

SH−1 ≤ (mA)H

δH = ∥(T̂ H
0)(s0, ⋅) − q∗(s0, ⋅)∥∞

δH = ∥(T̂ H
0)(s0, ⋅) − q∗(s0, ⋅)∥∞ ≤ ∥(T̂ T̂ H−1

0)(s0, ⋅) − T̂ q∗(s0, ⋅)∥∞ + ∥T̂ q∗(s0, ⋅) − q∗(s0, ⋅)∥∞ .

|T̂ q(s, a) − T̂ q∗(s, a)| ≤
γ

m
∑

s′∈C(s,a)

|Mq − v∗|(s′) ≤ γ max
s′∈C(s)

|Mq − v∗|(s′) ,

δH ≤ γ max
s′∈C(s0),a∈A

|(T̂ H−1
0)(s′, a) − q∗(s′, a)| + ∥T̂ q∗(s0, ⋅) − q∗(s0, ⋅)∥∞ .

δh = max
s′∈SH−h,a∈A

|T̂ h
0(s′, a) − q∗(s′, a)|

=:∥T̂ h0−q∗∥SH−h

,


δH ≤ γδH−1 + ∥T̂ q∗ − q∗∥S0 ,
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where we use the notation . More generally, we can prove by induction
on  (starting with ) that

while

where the last inequality uses that , which we shall assume for simplicity. Unfolding this
recursion for , letting

we get

We see that the �rst term in the sum on the right-hand side (in the parenthesis) is controlled by . It
remains to show that  can also be controlled (by choosing  appropriately).

In fact, notice that  is the maximum-norm error with which  approximates ,
but only for states in  we need to control this error. By our earlier argument, this set has at most 

 states, hence, it is believable that this error can be controlled even when  is chosen
independently of the number of states.

Since  has only  states in it, one’s �rst instinct is to take a union bound over the error
events for the states in this set. The trouble is that the set  itself is random. As such, it is not clear,
what the failure events should be? And how many failure events are we going to have? The size of this
set is also random! Notice that if  are some events with  and  are
random indices, it does not hold that : One cannot apply the union bound to randomly

chosen events. In fact, in the worst case, .

To exploit that  is a small set, we need to use one more time the structure. The reason that the
randomness of  is not going to matter too much is because of the special way this set is
constructed. First of all, clearly,  always and at this state the error 

 is under control by Hoe�ding’s inequality. Next, we may consider the
neighbors of . If , either , in which case we already know that the error at  is under
control, or  is a “bona �de neighbor” and we can think of then generating the elements in  just
inside the call of . Ultimately, the error at such a neighbor is under control because, by de�nition, all
the sets  (with  sweeping through all possible state-action pairs) are independently
chosen.

∥q∥U = maxs∈U,maxa∈A |q(s, a)|
1 ≤ h ≤ H h = H

δh ≤ γδh−1 + ∥T̂ q∗ − q∗∥SH−h
≤ γδh−1 + ∥T̂ q∗ − q∗∥SH−1

=:ε′/(1−γ)

,


δ0 = ∥q∗∥SH
≤ ∥q∗∥∞ ≤

1

1 − γ
,

ra(s) ∈ [0, 1]
(δh)h

δH ≤
γ H + ε′(1 + γ + ⋯ + γ H−1)

1 − γ
≤ (γ H +

ε′

1 − γ
)

1

1 − γ
. (5)

H

ε′ m

ε′/(1 − γ) T̂ q∗ q∗ = Tq∗

SH−1

(mA)H m

Controlling ∥T̂ q∗ − q∗∥SH−1

SH−1 (mA)H

SH−1

(Ai)i∈[n] P(Ai) ≤ δ I1, … , Ik ∈ [n]
P(∪k

j=1AIj
) ≤ kδ

P(∪k
j=1AIj

) = nδ

SH−1

SH−1

s0 ∈ SH−1

∥(T̂ q∗)(s0, ⋅) − Tq∗(s0, ⋅)∥∞

s0 S ∈ C(s0) S = s0 S

S C(S, a)
q

C(s, a) (s, a)
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This suggests that we should consider the chronological order in which in the recursive call of function 
 the states in  appear. Let this order be , where ,

,  is the second state that  is called on (necessarily, ),  is the third such state.
Note that states may reappear in this sequence multiple times. Furthermore, by construction, 

. Also note that the length of this sequence is not random: This length is exactly
the number of times  is called, which is clearly not random.

That  is under control directly follows from the next lemma:

Lemma: Assume that the immediate rewards belong to the  interval. For any  with
probability , for any ,

where  is given by .

Proof: Recall that  where (i) the  are mutually
independent and (ii) for any ,  is an i.i.d. sequence with common distribution .

For , , , let

(as earlier,  means that  is an element of the set composed of the elements in the sequence ).

Recall that by the de�nition of  and the properties of ,

Fix . Let . That is,  is the time when  �rst appears in the
sequence .

Fix . We claim that given ,  is i.i.d. with common distribution . That is,

for any ,

Note that given this, for any , by ,

q SH−1 S1, S2, … , Sn n = 1 + (mA) + ⋯ + (mA)H−1

S1 = s0 S2 q S2 ∈ C(s0) S3

SH−1 = {S1, … , Sn}
q

∥T̂ q∗ − q∗∥SH−1 = ∥T̂ q∗ − Tq∗∥SH−1

[0, 1] 0 ≤ ζ ≤ 1
1 − Anζ 1 ≤ i ≤ n

∥T̂ q∗(Si, ⋅) − q∗(Si, ⋅)∥∞ ≤ Δ(ζ, m) ,

Δ (3)

C(s, a) = (S ′
1(s, a), … , S ′

m(s, a)) (C(s, a))(s,a)

(s, a) (S ′
i(s, a))i Pa(s)

s ∈ S a ∈ A C ∈ Sm

g(s, a, C) = |
γ

m
∑
s′∈C

v∗(s′) − ⟨Pa(s), v∗⟩|

s′ ∈ C s′ C

T̂ q∗

|T̂ q∗(s, a) − q∗(s, a)| = |
γ

m
∑

s′∈C(s,a)

v∗(s′) − ⟨Pa(s), v∗⟩| = g(s, a, C(s, a)) . (6)

1 ≤ i ≤ n τ = min{1 ≤ j ≤ i : Sj = Si} τ Si

{Si}i

a ∈ A Sτ (S ′
j(Sτ , a))m

j=1 Pa(Sτ)

s, s′
1, … , s′

m ∈ S

P(S ′
1(Sτ , a) = s′

1, … , S ′
m(Sτ , a) = s′

m | Sτ = s) =
m

∏
j=1

P(s, a, s′
j) (7)

Δ ≥ 0 (6)
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for some binary valued functions , ,  where for ,  is de�ned so that

holds if and only if  holds, where  and  are arbitrary so that 
. That such functions exist follows because for any sequence  to verify whether 

the knowledge of the sets  su�ces: The appropriate function should �rst check 
, then move on to checking  only if  holds, etc.

Now, notice that by our assumptions, for ,  and 
are independent of each other. Hence,

Plugging this back into the previous displayed equation, “unrolling” the expansion done using the law
of total probability, we �nd that

Now, choose  from  so that, thanks to , for any �xed , 
 Plugging this in into the previous display we get

The claim the follows by a union bound over all actions and all . 

Putting everything together, we get that for any , the policy  induced by the planner is 
-optimal with

P(|T̂ q∗(Si, a) − q∗(Si, a)| > Δ) = P(g(Si, a, C(Si, a)) > Δ)
= P(g(Sτ , a, C(Sτ , a)) > Δ)

= ∑
s

P(g(s, a, C(s, a)) > Δ, Sτ = s)

= ∑
s

∑
1≤j≤i

P(g(s, a, C(s, a)) > Δ, Sj = s, τ = j)

= ∑
s

∑
1≤j≤i

∑ P(g(s, a, C(s, a)) > Δ, Sj = s, S1:j−1 = s1:j−1)

= ∑
s

∑
1≤j≤i

∑ P(g(s, a, C(s, a)) > Δ, ϕj(s, s1:j−1, C(s1), … , C(sj−1)) = 1) ,

s1:j−1∈S j−1:
s∉s1:j−1

s1:j−1∈S j−1:
s∉s1:j−1

ϕ1 … ϕi 1 ≤ j ≤ i ϕj

ϕj(s, s1:j−1, C(s1), … , C(sj−1)) = 1

Sj = s, S1:j−1 = s1:j−1 s ∈ S s1:j−1 ∈ S j−1

s ∉ s1:j−1 s1:j S1:j = s1:j

C(s1), … , C(sj−1)
S1 = s1 S2 = s2 S1 = s1

s ∉ s1:j−1 C(s, a) ϕj(s, s1:j−1, C(s1), … , C(sj−1)) = 1

P(g(s, a, C(s, a)) > Δ, ϕj(s, s1:j−1, C(s1), … , C(sj−1)) = 1)

= P(g(s, a, C(s, a)) > Δ) ⋅ P(ϕj(s, s1:j−1, C(s1), … , C(sj−1)) = 1) .

P(|T̂ q∗(Si, a) − q∗(Si, a)| > Δ) = ∑
s

P(g(s, a, C(s, a)) > Δ)P(Sτ = s) .

Δ = Δ(ζ, m) (3) |q∗|∞ ≤ 1/(1 − γ) (s, a)
P(g(s, a, C(s, a)) > Δ(ζ, m)) ≤ ζ

P(|T̂ q∗(Si, a) − q∗(Si, a)| > Δ(ζ, m)) ≤ ζ∑
s

P(Sτ = s) = ζ .

1 ≤ i ≤ n ■

Final error bound
0 ≤ ζ ≤ 1 π̂

ϵ(m, H, ζ)
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Thus, to obtain a planner that induces a -optimal policy, we can set ,  and  so that each term
above contributes at most :

For  we get that we can set . We can also set . To solve for the
smallest  that satis�es the last inequality, recall that . To �nd the critical value of  note
the following elementary result which we cite without a proof:

Proposition: Let , . Let . Then, for any positive real  such that ,

From this, de�ning

and

if  then all the inequalities are satis�ed. Putting things together, we thus get the following
result:

Theorem: Assume that the immediate rewards belong to the  interval. There is an online planner
such that for any , in any discounted MDP with discount factor , the planner induces a -optimal
policy and uses at most  elementary arithmetic and logic operations per its calls, where 

 is given by  and .

ϵ(m, H, ζ) :=
2

(1 − γ)2
γ H +

1

1 − γ

log( 2nA
ζ
)

2m
+ ζ .

⎡⎢⎣ ⎷ ⎤⎥⎦δ H ζ m

δ/3

2γ H

1 − γ
≤ (1 − γ)

δ

3
,

ζ ≤ (1 − γ)2 δ

6
and

m

log( 2nA
ζ
)

≥
18

δ2(1 − γ)6
.

H H = ⌈Hγ,(1−γ)δ/6⌉ ζ = (1 − γ)2δ/6
m n = (mA)H m

a > 0 b ∈ R t∗ = 2
a
[log ( 1

a
) − b] t t ≥ t∗

at + b > log(t) .

cδ =
18

δ2(1 − γ)6

m∗(δ, A) = 2cδ [H log(cδH) + log(
12

(1 − γ)2δ
) + (H + 1) log(A)] (8)

m ≥ m∗

[0, 1]
δ ≥ 0 γ δ

O((m∗A)H)
m∗(δ, A) (8) H = ⌈Hγ,(1−γ)δ/3⌉
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Overall, we see that the runtime did increase compared to the deterministic case (apart from
logarithmic factors, in the above result  whereas in the deterministic case !), but we
managed to get a runtime that is independent of the cardinality of the state space. Again, what is
troubling is the exponential dependence on the e�ective horizon, though as we have seen, in the
worst-case, this is unavoidable. In the next lectures we will consider proving the planner with extra
information so that this exponential dependence can be avoided.

The idea of the algorithm that we analyzed comes from a paper by Kearns, Mansour and Ng from 2002.
In their paper they consider the version of the algorithm which creates a fresh “new” random set 

 in every recursive call. This makes it harder to see their algorithm as approximating the Bellman
operator, but in e�ect, the two approaches are by and large the same. In fact, if we introduce  random

operators, , ,  which are the same as  above but  has its own “private” sets ,

then their algorithm can be written as computing

It is not hard to modify the analysis given here to accommodate this change. With this, one can also
interpret the calculations done by the algorithm as backing up values in a “sparse lookahead tree” built
recursively from .

Much work has been devoted to improving these basic ideas and eventually these ideas led to various
Monte-Carlo tree search algorithms, including yours truly’s UCT. In general, these algorithms attempt
to improve on the runtime by building the trees when they need to be built. As it turns out, a useful
strategy here is to expand nodes which in a way hold the greatest promise to improve the value at the
“root”. This is known as the “optimisism in planning”. Note that A* (and its MDP relative, AO) are also
based on optimism: A’s admissible heuristic functions in our language correspond to functions that
upper bound the optimal value. The de�nite source on MCTS theory as of today is
Remi Munos’s monograph.

Hoe�ding’s inequality is a special case of what is known as measure concentration. This phrase refers
to that the empirical measure induced by a sample is a good approximation to the whole measure. The
simplest case is when one just compares the means of the measures (the empirical and the sample-
generating one), giving rise to concentration inequalities around the mean. Hoe�ding’s inequality is an
example. What we like about Hoe�ding’s inequality (besides that it is simple) is that the failure
probability,  (later ) appears inside a logarithm. That means, that the price of being more stringent is

mild. When the exact dependence is of type that appears in Hoe�ding’s inequality (i.e., ),
we say that the deviation of the subgaussian type because Gaussian random variables also satisfy an

m = H 7/δ2 m = 1

Notes

Sparse lookahead trees

C(s, a)
H

T̂1 … T̂H T̂ T̂h (Ĉh(s, a))(s,a)

A = arg max
a

(T̂1 … T̂h0)(s0, a) .

s0

Measure concentration

δ ζ

√log(1/δ))
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inequality like this. Concentration of measure and concentration inequalities are a central topic in
probability theory, with separate books devoted to them. A few favourites are given at the end of this
notes . For learning purposes, Pollard’s mini-book is nice (but all these books have pros and cons), or
Vershynin’s book.

The comparison inequality between the logarithm and the linear function is given as Proposition 4
here. The proof is based on two observations: First, it is enough to consider the case when . Then,
if , the result is trivial, while for , the guess is based on doubling the value where the growth
rate of  matches that of .

A key idea of this lecture is that  is a good (random) approximation to , hence, it can be used in place

of . One can also tell this story by saying that the data underlying  gives a random approximation to
the MDP; the transition probabilities of this random approximating MDP would be de�ned using

It may seem quite miraculous that with only a few elements in  (i.e., small ) we get a good
approximation to the next state distribution. But so is the magic of randomness! Using a random
operator (or a sequence of them, if, as outlined above, one uses a fresh set of random next state every
time an update is calculated) in a dynamic programming method has been coined empirical dynamic
programming by Haskell et al..

A bigger point is that for a model to be a “good” approximation to the “true MDP”, it su�ces that the
Bellman optimality operator that it induces is a “close” approximation to the Bellman optimality

operator of the true MDP.

This in fact brings us to our next topic, which is what happens when the simulator is imperfect?

We can rarely expect simulators to be perfect. Luckily, not all is lost in this case. As noted above, if the
simulator induced an MDP whose Bellman optimality operator is in a way close to the Bellman
optimality operator of the true MDP, we expect the outcome of planning to be still a good policy in the
true MDP.

In fact, the above proof has already all the key elements in place to show this. In particular, it is not

hard to show that if  is a  max-norm contraction and  is its �xed point then

The comparison inequality

b = 0
a ≥ 1 a < 1

t ↦ at t ↦ log(t)

A model-centered view and random operators

T̂ T

T T̂

P̂(s, a, s′) =
1

m
∑

s′′∈C(s,a)

I{s′′ = s′}

C(s, a) m

Imperfect simulation model?

T̂ γ q̂∗

∥q̂∗ − q∗∥∞ ≤
∥T̂ q∗ − Tq∗∥∞

1 − γ
,
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which, combined with the our �rst lemma of this lecture on the policy error bound gives that the policy
that is greedy with respect to  is

optimal in the MDP underlying . We will return to this in later lectures. In particular, in batch
reinforcement learning, one of the basic methods is to learn a “model” of the environment and as such
it is inevitable to study the error that results from modelling errors. See Lecture 17 and Lecture 18.

We saw in homework 0 that randomization may help a little, and today we saw that it can help in a
more signi�cant way. A major lesson again is that representations do matter: If the MDP is not given
with a “generative simulator”, getting such a simulator may be really hard. This is good to remember
when it comes to learning models:

One should insist on learning models that make the job of planners easier.

Generative models are one such case, provably, as we have seen in today’s lecture put together with our
previous lower bound that involved the number of states. Randomization, more generally, is a powerful
tool in computing science, which brings us to a somewhat philosophical question: What is randomness?
Does “true randomness” exist? Can we really build computers to harness this?

What is the meaning of “true” randomness? The margin is de�nitely not big enough to explain this.
Hence, we just leave this there, hanging, for everyone to ponder about. But let’s also note that this is a
thoroughly studied question in theoretical computing science, with many beautiful results and even
books. Arora and Barak’s book on computational complexity (Chapters 7, 20 and 21) is a good start for
exploring this.

If simulation is expensive, it may be tempting to recycle the sets between calls of the planner. After all,
even if we recycle these sets,  will have the property that it selects -optimizing actions with high
probability at every state. However, this may not be a good idea. The reader is challenged to think about

what can go wrong? The proof actually uses that the planner construct a new random operator  with
every call. But where is this used?

All the computations that we do with MDPs tend to be approximate. We evaluate policies
approximately. We compute a Bellman back approximately. We have approximate models. We greedify
approximately. If any of these operations could enlarge small errors, none of the approximate methods
would work. The study of approximate computations (which is a necessity if one faces large MDPs) is a
study of the sensitivity of the values of the resulting policies to the errors introduced in the
computations. This, in numerical analysis, would be called error analysis. In other areas of

q̂∗

2∥T̂ q∗ − Tq∗∥∞

(1 − γ)2

T

Monte-Carlo methods

True randomness?

Can we recycle the sets  between the calls?C(s, a)

π̂ ϵ

T̂

The ubiquity of continuity arguments in the MDP literature
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mathematics, this is called sensitivity analysis. In fact, sensitivity analysis often involves computing
derivatives to see how fast outputs change as the inputs change (which is that data that will be
approximated). What should we be taking derivatives with respect to here? Well, it is always the data
that is being changed. One can in fact use di�erentiation based sensitivity analysis everywhere. This
has been tried a little in the “older” MDP literature and is also related to policy gradient theorems (that
we will learn about laters). However, perhaps there are more nice things to be discovered about this
approach.

The algorithm that is analyzed in this lecture requires local access simulators. This is better than
requiring global access, but worse than requiring online access. It remains an open question of whether
with online access, one can also get a similar result than shown in the present lecture and if not,
whether the sample complexity of planning remains �nite under this setting.

For �nite state-action MDPs where the rewards and transition probabilities are represented using
tables, a previous lecture’s main result established that an optimal policy of the MDP can be calculated
by using at most  arithmetic and logic operations (  here). In the
current lecture we saw that even when  is unbounded, given a simulator with local access, 

 such elementary operations and calls to a simulator are su�cient. In a �nite MDP,
depending on the values of  and , either policy iteration, or the online planner that builds the tree
will be faster. But policy iteration (and value iteration) as described previously used a table
representation. The question then arises of what is the sample complexity of planning with a simulator
access to a �nite MDP? If planning means outputting a policy, the complexity needs to scale with . In
the presence of global access simulators, a simple approach, is to sample an appropriate number of
next states for each state-action pair to build an empirical (but “sparse”) transition model and use this
in connection with any MDP solver. We will see later in Lecture 18 that in this case 
samples (or  samples per state-action pair) are su�cient to obtain a -optimal policy.

In the case of online planning with global access, the sample complexity cannot be worse, but it is
unclear whether it can be improved. Similarly, it is unclear what the complexity is in the case of either
local or online access.

Kearns, M., Mansour, Y., & Ng, A. Y. (2002). A sparse sampling algorithm for near-optimal planning
in large Markov decision processes. Machine learning, 49(2), 193-208. [link]

David Pollard (2015). A few good inequalities. Chapter 2 of a book under preparation with working
title “MiniEmpirical”. [link]

Stephane Boucheron, Gabor Lugosi and Pascal Massart (2012). Concentration inequalities: A
nonasymptotic theory of indepndence. Clarendon Press – Oxford. [link]

Roman Vershynin (2018). High-Dimensional Probability: An Introduction with Applications in Data
Science. [link]

From local to online access

When the state space is small

O(Hpoly(S, A)) H = 1/(1 − γ)
S

~
O((AH 7/δ2)H)

S, A H

S

O(H 3SA/δ2)
H 3/δ2 δ
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William B. Haskell, Rahul Jain, and Dileep Kalathil. Empirical dynamic programming. Mathematics
of Operations Research, 2016.
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RL Theory

Planning in MDPs / 7. Function Approximation

Our lower bound for online planners show that there are no online planners that lead to
good policies in all MDPs while satisfying the following three requirements

Thus, one is left with no choice than to give up on one of the requirements. Since
e�ciency is clearly nonnegotiable (otherwise the runner just would not be practical), the
only requirement that can be replaced is the �rst one. In what follows we will look at ways
of relaxing this requirement.

In all the relaxations we will look at, we will essentially restrict the set of MDPs that the
planner is expected to work on. However, we will do this in such a way that no MDP will be
ever ruled out. We achieve this by giving the planner some extra hint about the MDP and
we demand good performance only when the hint is correct. Since the hint will take a
general form, some hint is always correct for any MDP. Hence, no MDP is left behind and
the planner can again demanded to be e�cient and e�ective.

The hints that we start with will concern the value functions. In particular, they state that
either the optimal value, or the value function of all policies are e�ectively compressible.

For motivation, consider the �gure on the right. Imagine
the state space is an interval of the real line and the optimal
value function in an MDP looks like as shown on the �gure:
It is a nice, smooth function over the interval. As is well
known, such relatively slowly changing functions can be
well approximated by using the linear combination of a few �xed basis functions, like an
appropriate polynomial, or Fourier basis, or using splines. Then, one hopes that even

7. Function Approximation

the planner induces policies that achieve some positive fraction of the optimal value in
all MDPs;

1

the per-state runtime shows polynomial dependence on the planning horizon  and2 H

it shows a polynomial dependence on the number of actions and3

it shows no dependence on the number of states in the MDP.4

Hints on value functions
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though the state space is large or even in�nite as in this example, there could perhaps be a
method that calculates the few coe�cients needed get a good approximation to  with a
runtime that depends polynomially on the horizon, the number of actions and the
number of coe�cients that one needs to calculate. Given the knowledge of  and
simulator access to the MDP, good actions can then be e�ciently obtained by performing
one-step lookahead computations.

If the basis functions mentioned are  then, formally, the hope is that with
some coe�cients , we will have

In the reinforcement learning literature, the vector  is called the feature
vector assigned to state . For a more compact notation we also use  to be a map from 
to  which assigns the feature vectors to the states:

Conversely, given , its component are denoted using . It will also be
useful to introduce a matrix notation: Recall that the number of states is  and without
loss of generality we may assume that . Then, we can treat each of  as -
dimensional vectors: The th component of  is . Then, we can stack  next to
each other to form a matrix:

That is,  is a  matrix. The set of real-valued functions over the state space that can
be described with the linear combination of the basis functions is

Identifying the space of real-valued functions with the vector space  in the natural way,
 is a -dimensional subspace of , which is the same as the “column space”, or the

span, or the range space of :

v∗

v∗

Linear function approximation
ϕ1, … ,ϕd : S → R

θ = (θ1, … , θd)⊤ ∈ R
d

v∗(s) =
d

∑
i=1

θiϕi(s) for all s ∈ S . (1)

(ϕ1(s), … ,ϕd(s))⊤

s ϕ S

R
d

ϕ(s) = (ϕ1(s), … ,ϕd(s))⊤ .

ϕ : S → R
d ϕ1, … ,ϕd

S

S = [S] ϕ1, … ,ϕd S

i ϕj ϕj(i) ϕ1, … ,ϕd

Φ = ∈ RS×d .
| | … |

ϕ1 ϕ2 … ϕd

| | … |

Φ S × d

F = {f : S → R : ∃θ ∈ R
d s.t. f(s) = ⟨ϕ(s), θ⟩} .

RS

F d R
S

Φ

F = {Φθ : θ ∈ R
d} = span(Φ)
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If we need to indicate the dependence of  on the choice of features, we will write either 
 or .

Now, we have three equivalent ways of specifying the “features”, either by specifying the
basis functions , or the feature-map , or the feature matrix , and we have a
four equivalent way of specifying the functions that can be obtained via the linear
combination of features.

Note that in the above problem description it is tacitly assumed that the feature-map, in
some form or another, is available to the planner. In fact, the feature map can be made
available in multiple ways. When we argue for lower bounds, especially for query
complexity, we often assume that the whole feature-map is available for the algorithm.
For upper bounds with online planning, the most natural assumption is that the planner
gets from the simulator the feature vector of the states that it encounters. In particular,
when it comes to online planning, the natural assumption is that the planner gets the
feature vector of the initial state together with the state and with any subsequent calls to
the simulator, the simulator returns the feature vector of the next states, together with
the next states.

In what follows we will study planning under a number of
di�erent hints (or assumptions) that connect the MDP and
a feature-map. The simplest of this just states that 
holds:

Assumption A1 ( -realizibility): The MDP  and the
featuremap  are such that 

A second variation is when all value functions are realizable:

Assumption A2 (universal value function realizibility) The MDP  and the featuremap 
are such that for any memoryless policy  of the MDP, .

Clearly, A2 implies A1, because by the fundamental theorem of MDPs, there exists a
memoryless policy  such that . The �gure on the right illustrates the set of all
�nite MDPs with some state space and within those the set of those MDPs that satisfy A1
with a speci�c feature map  (denoted by A1  on the �gure), as well as those MDPs that

F

Fϕ FΦ

ϕ1, … ,ϕd ϕ Φ

Delivering the hint

Typical hints

(1)

v∗ M

ϕ v∗ ∈ Fϕ

M ϕ

π vπ ∈ Fϕ

π vπ = v∗

ϕ ϕ
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satisfy A2 with the same feature map (denoted by A2 ). Both of these sets represent a very
small fraction of all MDPs. However, of one changes the feature map, the union of all
these sets clearly covers the set of all MDPs: The hint is general.

There are many variations of these assumptions. Often, we will �nd it useful to relax the
assumption value functions are exactly realizable. Under the modi�ed assumptions the
value function does not need to lie in the span of the feature-map, but only in some
vicinity of it. The natural error metric to be used is the maximum norm for reasons that
will become clear later. To help with stating these assumptions in a compact form,
introduce the notation

to denote that

That is,  means that the best approximator to  from  approximates it within a
uniform error of .

Fixing  and replacing  with  in the above two assumptions gives the following:

Assumption A1  (approximate  realizability): The MDP  and the featuremap  are
such that 

Assumption A2  (approximate universal value function realizibility) The MDP  and
the featuremap  are such that for any memoryless policy  of the MDP, .

We obtain new variants if we consider feature-maps that map state-action pairs to
vectors. Concretely, (by abusing notation) let . Then, the analog of A1 is as
follows:

Assumption B1 ( -realizibility): The MDP  and the featuremap  are such that 

Here, as expected,  is de�ned as the set of functions that lie in the span of the feature-
map. The analog of A2 is as follows:

Assumption B2 (universal value function realizibility) The MDP  and the featuremap 
are such that for any memoryless policy  of the MDP, .

We can also introduce positive approximation errors , which lead to B1  and B2 :

ϕ

v ∈ε F

inf
f∈F

∥f − v∥∞ ≤ ϵ .

v ∈ε F v F

ε

ε ≥ 0 ∈ ∈ε

ε v∗ M ϕ

v∗ ∈ε Fϕ

ε M

ϕ π vπ ∈ε Fϕ

Action-value hints

ϕ : S × A → R
d

q∗ M ϕ q∗ ∈ Fϕ

Fϕ

M ϕ

π qπ ∈ Fϕ

ε > 0 ε ε
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Assumption B1  (approximate -realizibility): The MDP  and the featuremap  are
such that 

Assumption B2  (approximate universal value function realizibility) The MDP  and
the featuremap  are such that for any memoryless policy  of the MDP, .

One may wonder why not choose one of these assumptions? When one assumption
implies another, then clearly there is a preference to choose the weaker assumption. But
often, there is going to be a price and sometimes the assumptions are just not
comparable.

The idea of using value function approximation in planning dates back to at least the
1960s if not earlier. I include some intriguing early references at the end. That these ideas
already appeared at the down of computing where computers hardly even existed is quite
intriguing.

Function approximation is especially appealing when the state space, or the action space,
or both are “continuous” (i.e., they are a subset of a Euclidean space). In this case, the
compression is “in�nite”. Experimental evidence suggests that function approximation
can work quite well in the context of MDP planning in a surprisingly large number of
di�erent scenarios. When the spaces are in�nite, all the “math” will still go through,
except that occasionally one has to be a bit more careful. For example, one cannot clearly
say that  is a matrix, but  can clearly be de�ned as a linear operator mapping  to the
vector space of all real-valued functions over the (say) state space (when the feature map
is also over states).

The most successful use of the idea of compressing value functions uses neural networks.
Readers are most likely are already familiar with the ideas underlying neural networks.
The hope here is that whatever we �nd in the case of linear function approximation will
have implications in how to use nonlinear function approximation in MDP planning. In a
way, the very �rst question is whether one can decouple the design of the planning

ε q∗ M ϕ

q∗ ∈ε Fϕ

ε M

ϕ π qπ ∈ε Fϕ

Notes

Origin

In�nite spaces

Φ Φ R
d

Nonlinear value function approximation
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algorithm from what function approximation technique it is used with. We will study this
question by asking for planners that work with any feature map. If we �nd that we can
identify planners that are performant no matter the feature map, the decoupling is
successful and we can hope that the ideas will generalize to nonlinear function
approximation. However, if we �nd that successful planners need to use intricate
properties of the feature maps, then this is must be taken as a warning that complications
may arise when the results are generalized to nonlinear function approximation. In any
case, it appears to be a prudent strategy to �rst investigate the simpler, more
straightforward linear case, before considering the nonlinear case.

Computation with advice is a general approach in computer science where a problem of
computing a map is changed to computing a map which has an additional input, the
advice. Clearly, the approach taken here can be seen as a special case of computation with
advice. There is also the closely related notion of non-uniform computation studied in
computability/complexity theory. In non-uniform computation, the Turing machine, in
addition to its input, also receives some “advice” string.

Richard Bellman, Robert Kalaba and Bella Kotkin. 1963. Polynomial Approximation–A
New Computational Technique in Dynamic Programming: Allocation Processes.
Mathematics of Computation, 17 (82): 155-161

Daniel, James W. 1976. “Splines and E�ciency in Dynamic Programming.” Journal of
Mathematical Analysis and Applications 54 (2): 402–7.

Schweitzer, Paul J., and Abraham Seidmann. 1985. “Generalized Polynomial
Approximations in Markovian Decision Processes.” Journal of Mathematical Analysis
and Applications 110 (2): 568–82.

Brattka, Vasco, and Arno Pauly. 2010. Computation with Advice. arXiv [cs.LO].

Copyright © 2020 RL Theory.

Computation with advice/Non-uniform Computation
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RL Theory

Planning in MDPs / 8. Approximate Policy Iteration

Note: On March 13, 2021, these notes were updated as follows:

One simple idea to use function approximation in MDP planning is to take a planning
method that uses internal value functions and add a constraint that restrict the value
functions to have a compressed representation.

As usual, two questions arise:

Does this lead to an e�cient planner? That is, can the computation be carried out in time
polynomial in the relevant quantities, but not the size of the state space? In the case of
linear functions the question is whether we can calculate the coe�cients e�ciently.

Does this lead to an e�ective planner? In particular, how good a policy can we arrive at
with a limited compute e�ort?

In this lecture, as a start into exploring the use of value function approximation in planning,
we look at modifying policy iteration in the above described way. The resulting algorithm
belongs to the family of approximate policy iteration algorithms, which consists of all
algorithms derived from policy iteration by adding approximation to it.

We will work with linear function approximation. In particular, we will assume that the
planner is given as a hint a feature-map . In this setting, since policy
iteration hinges upon evaluating the policies obtained, the hint given to the planner is
considered to be “good” if the (action-)value functions of all policies are well-represented
with the features.

8. Approximate Policy Iteration

Tighter bounds are derived; the old analysis was based on bounding ; the
new analysis directly bounds , which leads to a better dependence on the
approximation error;

1 ∥q∗ − qπk∥∞

∥v∗ − vπk∥∞

Unbiased return estimates are introduced that use rollouts of random length.2

•

•

φ : S × A → R
d
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This means, that we will work under assumption B2  from the previous lecture, which we
copy here for convenience. In what follows we �x .

Assumption B2  (approximate universal value function realizibility) The MDP  and the
featuremap  are such that for any memoryless policy  of the MDP, .

Recall that here the notation  means that  can be approximated up to a uniform
error of  using linear combinations of the basis functions underlying the feature-map :

For any policy ,

One may question whether it is reasonable to expect that the value functions of all policies
can be compressed. We will come back to this question later.

Recall that in phase  of policy iteration, given a policy , the next policy  is obtained
as the policy that is greedy with respect to . If we found some coe�cients  such
that

then when it comes to “using” policy , we could just use  when
an action is needed at state . Note that this action can be obtained at the cost of 
elementary operations, a small overhead compared to a table lookup (with idealized 
access times).

Hence, the main question is how to obtain this parameter in an e�cient manner. To be
more precise, here we want to control the uniform error committed in approximating .

To simplify the notation, let . A simple idea is rolling
out with the policy  from a �xed set  to
“approximately” measure the value of  at the pairs in . For
concreteness, let . Rolling out with policy this pair
means using the simulator to simulate what would happen if
we used policy  for a number of consecutive time steps when the initial state is , the �rst
action , but for subsequent time steps the actions are chosen using policy  for whatever
states are encountered. If the simulation goes on for  steps, this way we get  trajectories

starting in . For  let the trajectory obtained be . Thus,

ε

ε > 0

ε M

φ π qπ ∈ε Fφ

qπ ∈ε Fφ qπ

ε φ

π

inf
θ∈Rd

max
(s,a)

|qπ(s, a) − ⟨θ,φ(s, a)⟩|(= inf
θ∈Rd

∥qπ − Φθ∥∞) ≤ ε .

Approximate Policy Evaluation: Done Well
k πk πk+1

qπk θk ∈ R
d

qπk ≈ Φθk ,

πk+1 arg maxa⟨θk,φ(s, a)⟩
s O(d)

O(1)

qπk

π = πk

π C ⊂ S × A

π C

(s, a) ∈ C

π s

a π

H m

z = (s, a) 1 ≤ j ≤ m τ
(j)
π (s, a)
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,

where , , and for , , and 

. The �gure on the right illustrates these trajectories.

Given these trajectories, the empirical mean of the discounted sum of rewards along these
trajectories is used for approximating :

Under the usual condition that the rewards are in the  interval, the expected value of 
 is in the  vicinity of the  and by averaging a large number of

independent trajectories, we also achieve that the empirical means are tightly concentrated
around their mean.

Using a randomization device, it is possible to remove the error (“bias”) introduced by
truncating the trajectories at a �xed time. For this, just let  be independent
geometrically distributed random variables with parameter , which are also
independently chosen from the trajectories. By de�nition  is the number of -
parameter Bernoulli trials needed to get one success. With the help of these variables, de�ne

now  by

Note that in the expression of  the discount factor is eliminated. To calculate 
one can just perform a rollout with policy  as before, just in each time step ,

after obtaining , draw a Bernoulli variable with parameter  to decide

whether the rollout should continue.

To see why the above de�nition works, �x  and note that by de�nition, for , 
 and thus . Therefore,

τ
(j)
π (s, a) = (S (j)

0 ,A
(j)
0 ,S

(j)
1 ,A

(j)
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(j)
H−1,A
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(j)
0 = s A

(j)
0 = a 1 ≤ t ≤ H − 1 S

(j)
t ∼ P

A
(j)
t

(S (j)
t−1)

A
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t ∼ π(⋅|S (j)

t )

qπ(z)
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m
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(j)
t

(S
(j)
t ). (1)

[0, 1]
q̂π(z) γH/(1 − γ) qπ(z)

(H (j))j
1 − γ

H (j) 1 − γ

R̂m(z)

R̂m(z) =
1
m

m

∑
j=1

H (j)−1

∑
t=0

r
A

(j)
t

(S (j)
t ) . (2)

R̂m(z) R̂m(z)
π t = 0, 1, …

r
A

(j)
t

(S
(j)
t ) (1 − γ)

j h ≥ 1
P(H (j) = h) = γh−1(1 − γ) P(H (j) ≥ t + 1) = γ t
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All in all, this means, that we expect that if we solve for the least-squares problem

we expect  to be a good approximation to . Or at least, we can expect this hold at the
points of , where we are taking our measurements. The question is what happens outside
of : That is, what guarantees can we get for extrapolating to points of . The
�rst thing to observe that unless we are choosing  carefully, there is no guarantee about
the extrapolation error will be kept under control. In fact, if the choice of  is so unfortunate
that all the feature vectors for points in  are identical, the least-squares problem will have
many solutions.

Our next lemma gives an explicit error bound on the extrapolation error. For the coming
results we slightly generalize least-squares by introducing a weighting of the various errors
in . For this, let  be a weighting function assigning a positive weight to
the various error terms and let

be the minimizer of the resulting weighted squared-loss. A simple calculation gives that
provided the (weighted) moment matrix

is nonsingular, the solution to the above weighted least-squares problem is unique and is
equal to

E[
H (j)−1

∑
t=0

r
A

(j)
t

(S
(j)
t )] =

∞

∑
t=0

E[I{t ≤ H (j) − 1}r
A

(j)
t

(S (j)
t )]

=
∞

∑
t=0

E[I{t ≤ H (j) − 1}] E[r
A

(j)
t

(S (j)
t )]

=
∞

∑
t=0

P(t + 1 ≤ H (j)) E[r
A

(j)
t

(S (j)
t )]

=
∞

∑
t=0

γ t
E[r

A
(j)
t

(S (j)
t )]

= qπ(z) .

θ̂ = arg min
θ∈Rd

∑
z∈C

(⟨θ,φ(z)⟩ − R̂m(z))
2

, (3)

Φθ̂ qπ

C

C Z := S × A

C

C

C

(3) ϱ : C → (0, ∞)

θ̂ = arg min
θ∈Rd

∑
z∈C

ϱ(z)(⟨θ,φ(z)⟩ − R̂m(z))
2

(4)

Gϱ = ∑
z∈C

ϱ(z)φ(z)φ(z)⊤ (5)
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From this expression we see that there is no loss of generality in assuming that the weights
in the weighting function sum to one: . We will denote this by writing 

 (here,  refers to the fact that we can see  as an element of a  simplex).
To state the lemma recall the notation that for a positive de�nite,  matrix  and
vector ,

Lemma (extrapolation error control in least-squares): Fix any , , 
and  such that the moment matrix  is nonsingular. De�ne

Then, for any  we have

Before the proof note that what his lemma tells us is that as long as we guarantee that the
moment matrix is full rank, the extrapolation errors relative to predicting with some 

 can be controlled by controlling

Proof: First, we relate  to :

θ̂ = G−1
ϱ ∑

z′∈C

ϱ(z′)R̂m(z′)φ(z′) ,

∑z∈C
ϱ(z) = 1

ϱ ∈ Δ1(C) Δ1 ϱ |C| − 1
d × d Q

x ∈ R
d

∥x∥2
Q = x⊤Qx .

θ ∈ R
d ε : Z → R C ⊂ Z

ϱ ∈ Δ1(C) Gϱ

θ̂ = G−1
ϱ ∑

z′∈C

ϱ(z′)(φ(z′)⊤θ + ε(z′))φ(z′) .

z ∈ Z

φ(z)⊤θ̂ − φ(z)⊤θ ≤ ∥φ(z)∥G−1
ϱ

max
z′∈C

ε(z′) .∣ ∣ ∣ ∣θ ∈ R
d

the value of ; and1 g(ϱ) := maxz∈Z ∥φ(z)∥G−1
ϱ

the maximum deviation of the targets used in the weighted least-squares problem and
the predictions with .

2

θ

θ̂ θ

θ̂ = G−1
ϱ ∑

z′∈C

ϱ(z′)(φ(z′)⊤θ + ε(z′))φ(z′)

= G−1
ϱ (∑

z′∈C

ϱ(z′)φ(z′)φ(z′)⊤)θ + G−1
ϱ ∑

z′∈C

ϱ(z′)ε(z′)φ(z′)

= θ + G−1
ϱ ∑

z′∈C

ϱ(z′)ε(z′)φ(z′).
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Then for a �xed ,

To get a sense of how to control the sum notice that if  in the last sum was somehow
replaced by , using the de�nition of  could greatly simplify the last expression. To
get here, one may further notice that having the term in absolute value squared would help.
Now, to get the squares, recall Jensen’s inequality, which states that for any convex
function  and probability distribution , . Of course, this
also works when  is a �nitely supported, which is the case here. Thus, applying Jensen’s
inequality with , we thus get

Plugging this back into the previous inequality gives the desired result. 

It remains to be seen of whether  can be kept under control. This is

the subject of a classic result of Kiefer and Wolfowitz:

Theorem (Kiefer-Wolfowitz): Let  be �nite. Let  be such that the underlying
feature matrix  is rank . There exists a set  and a distribution  over
this set, i.e. , such that

z ∈ Z

φ(z)⊤θ̂ − φ(z)⊤θ = ∑
z′∈C

ϱ(z′)ε(z′)φ(z)⊤G−1
ϱ φ(z′)

≤ ∑
z′∈C

ϱ(z′)|ε(z′)| ⋅ |φ(z)⊤G−1
ϱ φ(z′)|

≤ (max
z′∈C

|ε(z′)|)∑
z′∈C

ϱ(z′)|φ(z)⊤G−1
ϱ φ(z′)| .∣ ∣ ∣ ∣φ(z)

φ(z′) Gϱ

f μ f (∫ uμ(du)) ≤ ∫ f(u)μ(du)
μ

f(x) = x2

(∑
z′∈C

ϱ(z′)|φ(z)⊤G−1
ϱ φ(z′)|)

2

≤ ∑
z′∈C

ϱ(z′)|φ(z)⊤G−1
ϱ φ(z′)|2

= ∑
z′∈C

ϱ(z′)φ(z)⊤G−1
ϱ φ(z′)φ(z′)⊤G−1

ϱ φ(z)

= φ(z)⊤G−1
ϱ (∑

z′∈C

ϱ(z′)φ(z′)φ(z′)⊤)G−1
ϱ φ(z)

= φ(z)⊤G−1
ϱ φ(z) = ∥φ(z)∥2

G−1
ϱ

■

g(ϱ) = maxz ∥φ(z)∥G−1
ϱ

Z φ : Z → R
d

Φ d C ⊆ Z ϱ : C → [0, 1]
∑z′∈C

ϱ(z′) = 1

;1 |C| ≤ d(d + 1)/2

;2 supz∈Z ∥φ(z)∥G−1
ϱ

≤ √d
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We will not give a proof of the theorem, but we give references at the end where the reader
can look up the proof. When  is not full rank (i.e.,  is not rank ), one may reduce the
dimensionality (and the cardinality of  reduces accordingly). The problem of choosing 
and  such that  is minimized is called the -optimal design problem in statistics. This
is a speci�c instance of optimal experimental design.

Combining the Kiefer-Wolfowitz theorem with the previous lemma shows that least-

squares ampli�es the “measurement errors” by at most a factor of :

Corollary (extrapolation error control in least-squares via optimal design): Fix any 
 full rank. Then, there exists a set  with at most  elements and

a weighting function  such that for any  and any ,

where  is given by

Importantly, note that  and  are chosen independently of  and , that is, they are
independent of the target. This suggests that in approximate policy evaluation, one should
choose  as in the Kiefer-Wolfowitz theorem and use the  weighted moment matrix.
This leads to 

where  is de�ned by Eq.  and  is de�ned by Eq. . We call this procedure least-
square policy evaluation based on rollouts from -optimal design points, or LSPE- , for
short. Note that we stick to the truncated rollouts, because this allows a simpler
probabilistic analysis. That this properly controls the extrapolation error is as attested by
the next result:

In the previous line, the inequality is achieved with equality and the value of  is best
possible under all possible choices of  and .

3 √d

C ρ

φ Φ d

C C

ρ g(ρ) G

√d

φ : Z → R
d C ⊂ Z d(d + 1)/2

ϱ ∈ Δ1(C) θ ∈ R
d ε : C → R

max
z∈Z

φ(z)⊤θ̂ − φ(z)⊤θ ≤ √d max
z′∈C

ε(z′) .∣ ∣ ∣ ∣θ̂

θ̂ = G−1
ϱ ∑

z′∈C

ϱ(z′)(φ(z′)⊤θ + ε(z′))φ(z′) .

C ϱ θ ϵ

(C, ρ) ρ

θ̂ = G−1
ϱ ∑

z′∈C

ϱ(z′)R̂m(z′)φ(z′) . (6)

R̂m(z) (1) Gϱ (5)
G G
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Lemma (LSPE-  extrapolation error control): Fix any full-rank feature-map 
and take the set  and the weighting function  as in the Kiefer-Wolfowitz
theorem. Fix an arbitrary policy  and let  and  such that  and assume that

immediate rewards belong to the interval . Let  be as in Eq. . Then, for any 
, with probability ,

Notice that that from the Kiefer-Wolfowitz theorem,  and therefore nothing in
the above expression depends on the size of the state space. Now, say we want to make the

above error bound at most  with some value of . From the above
we see that it su�ces to choose  and  so that

This, together with  gives

Proof: In a nutshell, we use the previous corollary, together with Hoe�ding’s inequality and
using that , which follows since the rewards are bounded in 

.

Click here for the full proof.

In summary, what we have shown so far is that if the features can approximate well the
action-value function of a policy, then there is a simple procedure (Monte-Carlo rollouts
and least-squares estimation based on an optimal experimental design) to produce an
reliable estimate of the action-value function of the policy. The question remains whether if
we use these estimates in policy iteration, the whole procedure will still give good policies
after a su�ciently large number of iterations.

G φ : Z → R
d

C ⊂ Z ϱ ∈ Δ1(C)
π θ επ qπ = Φθ + επ

[0, 1] θ̂ (6)
0 ≤ δ ≤ 1 1 − δ

qπ − Φθ̂
∞

≤ ∥επ∥∞(1 + √d) + √d(
γH

1 − γ
+

1
1 − γ

√ log(2|C|/δ)

2m
).∥ ∥ (7)

|C| = O(d2)

∥επ∥∞(1 + √d) + 2ε ε > 0
H m

γH

1 − γ
≤ ε/√d and

1
1 − γ

√ log(2|C|/δ)
2m

≤ ε/√d.

|C| ≤ d(d + 1)/2

H ≥ H
γ,ε/√d

and m ≥
d

(1 − γ)2ε2
log

d(d + 1)

δ
.

|qπ − T H
π 0|∞ ≤ γH/(1 − γ)

[0, 1]

■
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Here we give a re�nement of the geometric progress lemma of policy iteration that allows
for “approximate” policy improvement steps. This previous lemma stated that the value
function of the improved policy  is at least as large as the Bellman operator applied to the
value function of the policy  to be improved. Our new lemma is as follows:

Lemma (Geometric progress lemma with approximate policy improvement): Consider a
memoryless policy  and its corresponding value function . Let  be any policy and
de�ne  via

Then,

Proof: First note that for the optimal policy , . We have

Using the value di�erence identity and that , we calculate

where the inequality follows because , the sum of positive

linear operators, is a positive linear operator itself and hence is also monotone. Plugging the
inequality obtained into  gives

Taking the maximum norm of both sides and using the triangle inequality and that 
 gives the desired result. 

Progress Lemma with Approximation Errors

π′

π

π vπ π′

ε : S → R

Tvπ = Tπ′vπ + ε .

∥v∗ − vπ
′

∥∞ ≤ γ∥v∗ − vπ∥∞ +
1

1 − γ
∥ε∥∞.

π∗ Tπ∗v∗ = v∗

v∗ − vπ
′
= Tπ∗v∗ − Tπ∗vπ +

≤Tvπ

Tπ∗vπ − Tπ′vπ + Tπ′vπ − Tπ′vπ
′

≤ γPπ∗(v∗ − vπ) + ε + γPπ′(vπ − vπ
′
) .



(10)

vπ = Tπv
π ≤ Tvπ

vπ − vπ
′

= (I − γPπ′)−1[vπ − Tπ′vπ] ≤ (I − γPπ′)−1[Tvπ − (Tvπ − ε)] = (I − γPπ′)−1ε ,

(I − γPπ′)−1 = ∑k≥0(γPπ′)k

(10)

v∗ − vπ
′
≤ γPπ∗(v∗ − vπ) + (I − γPπ′)−1ε.

∥(I − γPπ′)−1∥∞ ≤ 1/(1 − γ) ■

Approximate Policy Iteration
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Notice that the progress lemma makes no assumptions about the origin of the errors. This
motivates considering a generic version of approximate policy iteration where for  in
the th update set, the new policy  is approximately greedy with respect to  in that
sense that

The progress lemma implies that the resulting sequence of policies will have value
functions that converge to a neighborhood of  where the size of the neighborhood is
governed by the magnitude of the error terms .

Theorem (Approximate Policy Iteration): Let ,  be such that  holds for all 
. Then, for any ,

Proof: Left as an exercise. 

Consider now a version of approximate policy iteration where the sequence of policies 
 is de�ned as follows:

That is, for each ,  is greedy with respect to .

Corollary (Approximate Policy Iteration with Approximate Action-value Functions): The
sequence de�ned in  is such that

Proof: To simplify the notation consider policies  and functions  over the state-
action space such that  and . We have

k ≥ 1
k πk vπk

Tvπk = Tπk+1v
πk + εk . (11)

v∗

(εk)k

(πk)k≥0 (εk)k (11)
k ≥ 0 k ≥ 1

∥v∗ − vπk∥∞ ≤
γk

1 − γ
+

1
(1 − γ)2

max
0≤s≤k−1

∥εs∥∞ . (12)

■

(πk)k≥0

qk = qπk + ε′
k, Mπk

qk = Mqk , k = 0, 1, … . (13)

k = 0, 1, … πk qk

(13)

∥v∗ − vπk∥∞ ≤
γk

1 − γ
+

2
(1 − γ)2

max
0≤s≤k−1

∥ε′
s∥∞ .

π,π′ q, ε′

Mπ′q = Mq q = qπ + ε′

Tvπ ≥ Tπ′vπ = Mπ′(r + γPvπ) = Mπ′qπ = Mπ′q − Mπε
′ = Mq − Mπε

′

≥ M(qπ − ∥ε′∥∞1) − Mπε
′ ≥ Mqπ − 2∥ε′∥∞1 = Tvπ − 2∥ε′∥∞1 ,
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where we used that  is linear, monotone, and that  is monotone, and both are
nonexpansions in the maximum norm.

Hence, if  is de�ned by  then  and the result follows from the
previous theorem. 

Putting things together gives the following planning method:

We call this method least-squares policy iteration (LSPI) for obvious reasons. Note that this
is a global planning method: The method makes no use of an input state and the parameter
vector returned can be used to get the policy  (as in the method above).

Theorem (LSPI performance): Fix an arbitrary full rank feature-map  and
let . Assume that B2  holds. Then, for any , with probability at least 

, the policy  which is greedy with respect to  is -suboptimal with

In particular, for any , choosing  so that

policy  is -optimal with

Mπ M

εk (11) ∥εk∥∞ ≤ 2∥ε′
k∥∞

■

Global planning with least-squares policy iteration

Given the feature map , �nd  and  as in the Kiefer-Wolfowitz theorem1 φ C ρ

Let 2 θ−1 = 0

For  do3 k = 0, 1, 2, … ,K − 1

 Roll out with policy  for  steps to get the targets  where   
 and 

4 π := πk H R̂m(z) z ∈ C

πk(s) = arg maxa⟨θk−1,φ(s, a)⟩

 Solve the weighted least-squares problem given by Eq.  to get .5 (4) θk

Return 6 θK−1

πK

φ : S × A → R
d

K,m,H ≥ 1 ε 0 ≤ ζ ≤ 1
1 − ζ πK ΦθK−1 δ

δ ≤
2(1 + √d)

(1 − γ)2
ε

approx. error

+
γK−1

1 − γ

iter. error

+
2√d

(1 − γ)3
(γH +√ log(d(d + 1)K/ζ)

2m
)

pol.eval. error

.
  

ε′ > 0 K,H,m

K ≥ Hγ,γε′/2

H ≥ H
γ,(1−γ)2ε′/(8√d) and

m ≥
32d

(1 − γ)6(ε′)2
log((d + 1)2K/ζ)

πK δ



5/16/22, 11:21 PM 8. Approximate Policy Iteration - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec8/ 12/21

while the total computation cost is .

Thus, with a polynomial cost, LSPI with the speci�c con�guration at the cost of polynomial
computation cost, but importantly, with a cost that is independent of the size of the state
space, can result in a good policy as long as , the worst-case error of approximating
action-value functions of policies using the features provided, is su�ciently small.

Proof: Note that B2  and that  is full rank implies that for any memoryless policy  there
exists a parameter vector  such that  (cf. Part 2 of Question 3 of
Assignment 2). Hence, we can use the “LSPE extrapolation error bound” (cf. ). By this
result, a union bound and of course by B2 , we get that for any , with probability
at least , for any ,

where we also used that . Call the quantity on the right-hand side in the
above inequality .

Take the event when the above inequalities hold and for now assume this event holds. By
the previous theorem,  is -optimal with

To obtain the second part of the result, we split  into two equal parts:  is set to force the
iteration error to be at most , while  and  are chosen to force the policy evaluation
error to be at most . Here, to choose  and ,  is again split into two equal parts.
The details of this calculation are left to the reader. 

Value iteration and policy iteration are speci�c instances of dynamic programming
methods. In general, dynamic programming refers to methods that use value functions to

δ ≤
2(1 + √d)

(1 − γ)2
ε + ε′ ,

poly( 1
1−γ

, d, A, 1
ε′ , log(1/ζ))

ε

ε Φ π

θ ∈ R
d ∥Φθ − qπ∥∞ ≤ ε

(7)

ε 0 ≤ ζ ≤ 1
1 − ζ 0 ≤ k ≤ K − 1

∥qπk − Φθk∥∞ ≤ ε(1 + √d) + √d(
γH

1 − γ
+

1
1 − γ

√ log(d(d + 1)K/ζ)
2m

) ,

|C| ≤ d(d + 1)
κ

πK δ

δ ≤
γK−1

1 − γ
+

2
(1 − γ)2

κ .

ε′ K

ε′/2 H m

ε′/2 H M ε′/2
■

Notes

Approximate Dynamic Programming (ADP)
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calculate good policies. In approximate dynamic programming the methods are modi�ed
by introducing “errors” when calculating the values. The idea is that the origin of the errors
does not matter (e.g., whether they come due to imperfect function approximation, linear,
or nonlinear, or due to the sampling): The analysis is done in a general form. While here we
met approximate policy iteration, one can also use the same ideas as shown here to study an
approximate version of value iteration. A homework in problem set 2 asks you to study this
method, which is usualy called approximate value iteration. In an earlier homework you
were asked to study how linear programming can also be used to compute optimal value
functions. Adding approximations we then get approximate linear programming.

We note in passing that fans of neural networks should like that the general, ADP-style
results, like the theorem in the middle of this lecture, can be also applied to the case when
neural networks are used as the function approximation technique. However, one main
lesson of the lecture is that to control extrapolation errors, one should be quite careful in
how the training data is chosen. For linear prediction and least-squares �tting, optimal
design gives a complete answer, but the analog questions are completely open in the case of
nonlinear function approximation, such as neural networks. There is also a sizable
literature that connects nonparametric techniques (an analysis friendly relative of neural
networks) to ADP methods.

The idea of introducing approximate calculations has been introduced at the same time
people got interested in Markov Decision Processes in the 1960s. Hence, the literature is
quite enormous. However, the approach taken here which asks for error bounds where the
algorithmic (not approximation-) error is uniformly controlled regardless of the MDP is
quite recent and where the term that involves the approximation error is also uniformly
bounded (for a �xed dimension and discount factor).

Earlier literature often presented bounds where the magni�cation factor of the
approximation and the algorithmic error involved terms which depended on the MDP. Often
these came in the form of “concentrability coe�cients” (and yours truly was quite busy
with working on these results a while ago). The main conclusion of this earlier analysis is
that more stochasticity in the transitions means less control, less concentrability, which is
advantageous for the ADP algorithms. While this makes sense and this indicates that these
earlier results are complementary to the results presented here, the issue is that these
results are quite pessimistic for example when the MDP is deterministic (as in this case the
concentrability coe�cients can be as large as the size of the state space).

What function approximation technique to use?

Concentrability coe�cients and all that jazz
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While here we emphasized the importance of using a good design to control the
extrapolation errors, in these earlier results, no optimal design was used. The upshot is that
this saves the e�ort of coming up with a good design, but the obvious downside is that the
extrapolation error may become uncontrolled. In the batch setting (which we will come
back to later), of course, there is no way to control the sample collection, and this is in fact
the setting where this earlier analysis was done.

A critical assumption in the analysis of API was that the approximation error is controlled
uniformly for all policies. This feels limiting. Yet, there are some interesting su�cient
conditions when this assumption is clearly satis�ed. In general, these require that the
transition dynamics and the reward are both “compressible”. For example, if the MDP is
such that , the immediate reward as a function of the state-action pairs satis�es 
and the transition matrix,  satis�es  with some matrix ,
then for any policy policy ,  has a range which is a subset of 

. Since  is the �xed-point of , i.e., , it follows that  is also
necessarily in the range space of . As such,  and . MDPs that satisfy the
above two constraints are called linear in  (or sometimes, just “linear MDPs”). Exact
linearity can be relaxed: If  and , then for any policy , 

 with . Nevertheless, later we will investigate whether

this assumption can be relaxed.

It is not known whether the bound presented in the �nal result is tight. In fact, the
dependence of  on the  is almost certainly not tight; in similar scenarios it has
been shown in the past that replacing Hoe�ding’s inequality with Bernstein’s inequality
allows the reduction of this factor. It is more interesting whether the ampli�cation factor of

the approximation error, , is best possible. In the next lecture we will show

that the  approximation error ampli�cation factor cannot be removed while keeping the
runtime under control. In a later lecture, we will show that the dependence on 
cannot be improved either – at least for this algorithm. However, we will see that if the
main concern is the ampli�cation of the approximation error, while keeping the runtime
polynomial (perhaps with a higher order though) then under B2  better algorithms exist.

The careful reader would not miss that to run the proposed method one needs to �nd the set
 and the weighting function . The �rst observation here is that it is not crucial to �nd the

best possible  pair. The Kiefer-Wolfowitz theorem showed that with this best possible

The strength of hints

r r = Φθr
P ∈ [0, 1]SA×S P = ΦH H ∈ R

d×S

π Tπq = r + γPMπq

span(Φ) = Fφ qπ Tπ qπ = Tπq
π qπ

Tπ qπ ∈ Fφ εapx = 0
Φ

r = Φθr + εr P = ΦH + E π

qπ ∈ε Fφ ε ≤ ∥εr∥∞ +
γ

1−γ
∥E∥∞

The tightness of the bounds

m 1/(1 − γ)

√d/(1 − γ)2

√d

1/(1 − γ)

ε

The cost of optimal experimental design

C ρ

(C, ρ)
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choice, . However, if one �nds a pair such that , the price of this is

that wherever  appears in the �nal performance bound, a submultiplicative factor of 
will also need to be introduced. This should be acceptable. In relation to this note that by
relaxing this optimality requirement, the cardinality of  can be reduced. For example, by
introducing the factor of  as suggested above allows one to reduce the cardinlity to 

; which may actually be a good tradeo� as this can save much on the runtime.

However, the question still remains of who computes these (approximately) optimal
designs and at what cost. While this calculation only needs to be done once and is
independent of the MDP (just depends on the feature map), the value of these methods
remains unclear because of this compute cost. General methods to compute approximately
optimal designs needed here are known, but their runtime for our case will be proportional
to the number of state-action pairs. In the very rare cases when simulating transitions is
very costly but the number of state-action pairs is not too high, this may be a viable option.
However, these cases are rare. For special choices of the feature-map, optimal designs may
be known. However, this reduces the general applicability of the method presented here.
Thus, a major question is whether the optimal experimental design can be avoided. What is
known is that for linear prediction with least-squares, clearly, they cannot be avoided. One
suspects that this is true more generally.

Can optimal designs be avoided while keeping the results essentially unchanged? Of
particular interest would be if the feature-map would also be only “locally explored” as the
planner interacts with the simulator. Altogether, one suspects that two factors contributed
here for the appearance of optimal experimental design: One factor is that the planner is
global: It comes up with a parameter vector that leads to a policy that can be used regardless
of the state. The other (perhaps) factor is that the approach was based on simple “patching
up” a dynamic programming algorithm with a function approximator. While this is a
common approach, controlling the extrapolation errors in this approach is critical and is
likely only possible with something like an optimal experimental design. As we shall see
soon, there are indeed approaches that avoid the optimal experimental design step and
which are based on online planning and they also deviate from the ADP approach.

The policy evaluation method presented here feels unsophisticated. It uses simple Monte-
Carlo rollouts, with truncation, averaging and least-squares regression. The reinforcement
learning literature o�ers many alternatives, such as the “temporal di�erence” learning
type methods that are based on solving the �xed point equation . One can indeed
try to use this equation to avoid the crude Monte-Carlo approach presented here, in the
hope of reducing the variance (which is currently rather crudely upper bounded using the 

g(ρ) = √d g(ρ) = 2√d

√d 2

C

2
O(d log log d)

Policy evaluation alternatives

qπ = Tπq
π
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 term in the Hoe�ding bound). Rewriting the �xed point as ,
and then plugging in , we see that the trouble is that to control the
extrapolation errors, the optimal design must likely depend on the policy to be evaluated
(because of the appearance of ).

Let  and  be so that

Here,  is called the “Bellman residual” of . The policy evaluation alternatives above aim
at controlling these residuals. The reader is invited to derive the analogue of the
“approximate policy iteration” error bound in  for this scenario.

One may wonder about how critical is the presence of  in the results presented. For this, we
can say that it is not critical. Unweighted least-squares does not perform much worse.

The error bound presented for least-squares does not use the full power of randomness.
When part of the errors  with  are random, some helpful averaging e�ects can
appear, which we ignored for now, but which could be used in a more re�ned analysis.

Optimal exoerimental design is a sub�eld of statistics. The design considered here is just
one possibility. In fact, this design which is called G-optimal design (G stands,
uninspiringly, for the word “general”). The Kiefer-Wolfowitz theorem actually also states
that this is equivalent to the D-optimal designs.

The results presented show convergence to a ball around the optimal target. Some people
think this is a major concern. While having a convergent method may look more appealing,
as long as one controls the size of the ball, I will not be too concerned.

Similarly to what is done here, one can introduce an approximate version of value-iteration.
This is the subject of Question 3 of homework 2. While the conditions are di�erent, the
qualitative behavior of AVI is similar to that of approximate policy iteration.

1/(1 − γ) (I − γPπ)qπ = r

qϕ = Φθ + ε

(I − γPπ)Φ

Alternative error control: Bellman residuals
(πk)k≥0 (qk, εk)k≥0

εk = qk − Tπk
qk

εk qk

(12)

The role of  in the Kiefer-Wolfowitz resultρ

ρ

Least-squares error bound

ε(z) z ∈ C

Optimal experimental design – a �eld on its own

Lack of convergence

Approximate value iteration (AVI)
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In particular, as for approximate policy iteration, there are two steps to this proof: One is to
show that the residuals  can be controlled and the second is that if they are
controlled then the policy that is greedy with respect to (say)  is -optimal with 
controlled by . For this second part, we have the following
bound:

where . The procedure that uses least-squares �tting to get the iterates 
 is known under various names, such as least-squares value iteration (LSVI), �tted Q-

iteration (FQI), least-squares Q iteration (LSQI). This proliferation of abbreviations and
names is unfortunate, but there is not much that can be done at this stage. To add insult to
injury, when neural networks are used to represent the iterates and an incremental
stochastic gradient descent algorithm is used for “�tting” the weights of these networks by
resampling old data from a “replay bu�er”, the resulting procedure is coined “Deep Q-
Networks” (training), or DQN for short.

The Kiefer-Wolfowitz theorem implies the following:

Proposition: Let  and  be such that  and 

. Then, there exist a matrix  such that for 

there exists  such that the following hold:

Proof: Let  be the -optimal design whose existence is guaranteed by the
Kiefer-Wolfowitz theorem. Let  be the underlying moment

matrix. Then, by the de�nition of , .

εk = qk − Tqk−1

qK δ δ

ε1:K := max1≤k≤K ∥εk∥∞

δ ≤ 2H 2(γK + ε1:K) . (14)

H = 1/(1 − γ)
(qk)k

Bounds on the parameter vector

ϕ : Z → R
d θ ∈ R

d supz∈Z |⟨ϕ(z), θ⟩| ≤ 1

supz∈Z ∥ϕ(z)∥2 < +∞ S ∈ R
d×d ~

ϕ

~
ϕ(z) = Sϕ(z) , z ∈ Z

~
θ ∈ R

d

, ;1 ⟨ϕ(z), θ⟩ = ⟨
~
ϕ(z),

~
θ⟩ z ∈ Z

;2 supz∈Z ∥
~
ϕ(z)∥2 ≤ 1

.3 ∥
~
θ∥2 ≤ √d

ρ : Z → [0, 1] G

M = ∑z∈supp(ρ) ρ(z)ϕ(z)ϕ(z)⊤

ρ supz∈Z ∥ϕ(z)∥2
M −1 ≤ d
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De�ne  and . The �rst property is clearly satis�ed. As to the second
property,

Finally, for the third property,

�nishing the proof. 

Thus, if one has access to the full feature-map then knowing that a function realized is
bounded, one may as well assume that the feature map is bounded and the parameter vector

is bounded just by .

The linear least-squares predictor given by a feature-map  and data 

predicts a response at  via  where

with

Here, by abusing notation for the sake of minimizing clutter, we use , 

. The problem is that  may not be invertible (i.e.,  may not be de�ned as
written above). “By continuity”, it is nearly equally problematic when  is ill-conditioned
(i.e., its minimum eigenvalue is “much smaller” than its maximum eigenvalue). In fact, this
leads to poor “generalization”. One remedy, often used, is to modify  by shifting it with a
small constant multiple of the identity matrix:

S = (dM)−1/2 ~
θ = S−1θ

∥
~
ϕ(z)∥2

2 = ∥(dM)−1/2ϕ(z)∥2
2 = ϕ(z)⊤(dM)−1ϕ(z) ≤ 1 .

∥
~
θ∥2

2 = dθ⊤ ∑
z∈supp(ρ)

ρ(z)ϕ(z)ϕ(z)⊤ θ = d ∑
z∈supp(ρ)

ρ(z)(θ⊤ϕ(z))2

≤1

≤ d ,
⎛

⎝

⎞

⎠ 

■

√d

Regularized least-squares
ϕ (z1, y1), … , (zn, yn)

z ⟨ϕ(z), θ̂⟩

θ̂ = G−1
n

∑
i=1

ϕiyi , (15)

G =
n

∑
i=1

ϕiϕ
⊤
i .

ϕi = ϕ(zi)

i = 1, … ,n G θ̂

G

G

G = λI +
n

∑
i=1

ϕiϕ
⊤
i .
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Here,  is a tuning parameter, whose value is often chosen based on cross-validation
or with a similar process. The modi�cation guarantees that  is invertible and it overall
improves the quality of predictions, especially when  is tuned base on data.

Above, the choice of the identity matrix, while is common in the literature, is completely
arbitrary. In particular, invertibility will be guaranteed if  is replaced with any other
positive de�nite matrix . In fact, the matrix one should use here should be one that makes 

 small (while, say, keeping the minimum eigenvalue of  at constant). That this is the
choice that makes sense can be argued for by noting that with

the  vector de�ned in  is the minimizer of

and thus, the extra penalty has the least impact for the choice of  that makes the norm of 
the smallest. If we only know that , by our previous note, a good choice
is , where  where  is a -optimal design. Indeed,

with this choice, . Note also that if we apply the feature-
standardization transformation of the previous note, we have

showing that the choice of using the identity matrix is justi�ed when the features are
standardized as in the proposition of the previous note.

We will only scratch the surface now; expect more references to be added later.

The bulk of this lecture is based on

Tor Lattimore, Csaba Szepesvári, and Gellért Weisz. 2020. “Learning with Good Feature
Representations in Bandits and in RL with a Generative Model.” ICML and
arXiv:1911.07676,

λ > 0
G

λ

I

P

|θ|2
P P

G = λP +
n

∑
i=1

ϕiϕ
⊤
i .

θ̂ (15)

Ln(θ) =
n

∑
i=1

(⟨ϕi, θ⟩ − yi)
2 + λ∥θ∥2

P ,

P θ

supz |⟨ϕ(z), θ⟩| ≤ 1
P = dM M = ∑z∈supp(ρ) ρ(z)ϕ(z)ϕ(z)⊤ ρ G

∥θ∥2
P = d∥θ∥2

M ≤ d

(dM)−1/2(∑
i

ϕiϕ
⊤
i + λdM)(dM)−1/2 = ∑

i

~
ϕi

~
ϕ⊤
i + λI ,
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who introduced the idea of using -optimal designs for controlling the extrapolation
errors. A very early reference on error bounds in “approximate dynamic programming” is
the following:

Whitt, Ward. 1979. “Approximations of Dynamic Programs, II.” Mathematics of
Operations Research 4 (2): 179–85.

The analysis of the generic form of approximate policy iteration is a re�nement of
Proposition 6.2 from the book of Bertsekas and Tsitsiklis:

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scienti�c, Belmont, Massachusetts, 1996.

However, there are some di�erences between the “API” theorem presented here and
Proposition 6.2. In particular, the theorem presented here appears to capture all sources of
errors in a general way, while Proposition 6.2 is concerned with value function
approximation errors and errors introduced in the “greedi�cation step”. The form adopted
here appears, for example, in Theorem 1 of a technical report of Scherrer, who also gives
earlier references:

Scherrer, Bruno. 2013. “On the Performance Bounds of Some Policy Search Dynamic
Programming Algorithms.” arxiv.

The earliest of these references is perhaps

Munos, R. 2003. “Error Bounds for Approximate Policy Iteration.” ICML.

Least-squares policy iteration appears in

Lagoudakis, M. G. and Parr, R. Least-squares policy iteration. The Journal of Machine
Learning Re-search, 4:1107–1149, 2003.

The particular form presented in this work though uses value function approximation based
on minimizing the Bellman residuals (using the so-called LSTD method).

Two books that advocate the ADP approach:

Powell, Warren B. 2011. Approximate Dynamic Programming. Solving the Curses of
Dimensionality. Hoboken, NJ, USA: John Wiley & Sons, Inc.

Lewis, Frank L., and Derong Liu. 2013. Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control. Hoboken, NJ, USA: John Wiley & Sons, Inc.
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Bertsekas, Dimitri P. 2009. “Chapter 6: Approximate Dynamic Programming,” January,
1–118.

A paper that is concerned with API and least-squares methods, but uses concentrability is:

Antos, Andras, Csaba Szepesvári, and Rémi Munos. 2007. “Learning near-Optimal Policies
with Bellman-Residual Minimization Based Fitted Policy Iteration and a Single Sample
Path.” Machine Learning 71 (1): 89–129.

Optimal experimental design has a large literature. A nice book concerned with computation
is this:

M. J. Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

The Kiefer-Wolfowitz theorem is from:

J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. Canadian Journal
of Mathematics, 12(5):363–365, 1960.

More on computation here:

E. Hazan, Z. Karnin, and R. Meka. Volumetric spanners: an e�cient exploration basis for
learning. Journal of Machine Learning Research, 17(119):1–34, 2016

M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization, volume 2. Springer Science & Business Media, 2012.

The latter book is a very good general starting point for convex optimization.

That the features are standardized as shown in the notes is assumed (and discussed), e.g., in

Wang, Ruosong, Dean P. Foster, and Sham M. Kakade. 2020. “What Are the Statistical
Limits of O�ine RL with Linear Function Approximation?” arXiv [cs.LG]. arXiv

which we will meet later.

Copyright © 2020 RL Theory.
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RL Theory

Planning in MDPs / 9. Limits of query-e�cient planning

In the last lecture we have seen that given a discounted MDP , a
feature-map  and a precomputed, suitably small core set, for any 
target and any con�dence parameter , interacting with a simulator of , with
at most , compute time, LSPI returns some weight vector 

 such that with probability , the policy that is greedy with respect to 
is -suboptimal with

where  is the error with which the features can approximate the action-value functions
of the policies of the MDP:

Here, following our earlier convention,  refers to the  matrix that is
obtained by stacking the feature vectors  of all possible state-action pairs on the
top of each other in some �xed order. Setting  to match the �rst term in Eq. , we can
keep the e�ort polynomial in the relevant quantities (including ), but even in the limit
of in�nite computation, the best bound we can obtain is

While it makes sense that with a reasonable compute e�ort  cannot be better than  or a

constant multiple of , it is unclear whether the extra  factor is an artifact of
the proof. We may suspect that some power of  may be necessary, because even
if we knew the parameter vector that gives the best approximation to , the error
incurred by acting greedily with respect to  could be as large as

9. Limits of query-e�cient planning
M = (S,A,P , r, γ)

φ : S × A → Rd ε′ > 0
0 ≤ ζ ≤ 1 M

poly( 1
1−γ

, d, A, 1
(ε′)2 , log(1/ζ))

θ ∈ Rd 1 − ζ q = Φθ

δ

δ ≤
2(1 + √d)

(1 − γ)2
ε + ε′ , (1)

ε

ε = ε∗(M, Φ) := sup
π memoryless

inf
θ∈Rd

∥Φθ − qπ∥∞ . (2)

Φ |S × A| × d

φ⊤(s, a)
ε′ (1)

1/ε

δ ≤
2(1 + √d)

(1 − γ)2
ε . (3)

δ ε

ε √d/(1 − γ)2

1/(1 − γ)
q∗

q∗

ε

1 − γ
.
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However, at this point, it is completely unclear whether the extra  factor is necessary.
The main question asked in this lecture: Are the “extra” factors truly necessary in the
above bound? Or are there some other polynomial runtime algorithms that are able to
produce policies with smaller suboptimality?

In this lecture we will give a partial answer to this question: We will justify the presence of

. We start with a lower bound that shows that when there is no limit on the number of

actions, e�cient algorithms are limited to .

For the statement of our results, the following de�nitions will be useful:

De�nition (soundness): An online planner is -sound if for any �nite discounted
MDP  and feature-map  such that ,
when interacting with , the planner induces a -suboptimal policy of .

De�nition (memoryless planner): Call a planner memoryless if it does not retain any
information between its calls.

The announced result is as follows:

Theorem (Query lower bound: large action sets): For any , , positive
integer  and for any -sound online planner  there exists a “featurized-MDP” 

 with rewards in  with  such that when interacting with a
simulator of , the expected number of queries used by  is at least

Note that if  or smaller, the number of queries is exponential in . For the proof we
need a result that shows that one can pack the -dimensional unit sphere with
exponential in  many vectors that are nearly orthogonal. The precise result, which is
stated without proof, is as follows:

√d

√d

δ = Ω(ε√d)

Query lower bound for MDPs with large action sets

(δ, ε)
M = (S,A,P , r, γ) φ : S × A → Rd ε∗(M, Φ) ≤ ε

(M,φ) δ M

ε > 0 0 < δ ≤ 1/2
d (δ, ε) P

(M,φ) [0, 1] ε∗(M, Φ) ≤ ε

(M,φ) P

Ω exp
1
32
(

√dε

δ
)

2

.
⎛

⎝

⎛

⎝

⎞

⎠

⎞

⎠

δ = ε d

d

d
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Lemma (Johnson-Lindenstrauss (JL) Lemma) For every  and integers  such
that

then there exists  vectors of the -dimensional unit sphere such that for all 
,

Note that for a �xed dimension , the valid range for  is

In particular,  can be “exponentially large” in  when  is a constant. We can directly
relate this lemma to our feature matrices. In particular, the lemma is equivalent to the
following result:

Proposition (JL feature matrix): For any  as in the JL lemma there exists a matrix 
 such that for any ,

where  is the th basis vector of standard Euclidean basis of , and in particular if  is
the th row of ,  holds.

Proof: Choose  from the JL lemma as the rows of . Fix . Then, 
 Since by

construction  for , the statement follows. 

Finally, we need a variation of the result of Question 6 of Assignment 0. This question
asked for proving that any algorithm that identi�es the single nonzero entry in a binary
array of length  requires to look at at least  entries of the array on

τ > 0 d, k

⌈
8 ln k

τ 2
⌉ ≤ d ≤ k

v1, . . . , vk d

1 ≤ i < j ≤ k

|⟨vi, vj⟩| ≤ τ .

d k

d ≤ k ≤ exp(
dτ 2

8
) . (4)

k d τ

τ, d, k
Φ ∈ Rk×d i ∈ [k]

max
i∈[k]

inf
θ∈Rd

∥Φθ − ei∥∞ ≤ τ , (5)

ei i Rk φ⊤
i

i Φ ∥Φφi − ei∥∞ ≤ τ

v1, … , vk Φ i ∈ [k]
Φvi − ei = (v⊤

1 vi, … , v⊤
i vi, … , v⊤

k vi)
⊤ − ei = (v⊤

1 vi, … , 0, … , v⊤
k vi)

⊤ .
|v⊤

j vi| ≤ τ j ≠ i ■

k (k + 1)/2 − 1/k
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expectation. A similar lower bound applies if we require the algorithm to be correct with,
say, probability :

Lemma (High-probability needle lemma): Let . Any algorithm that correctly
identi�es the single nonzero entry in any binary array of length  with probability at least 

 has the property that the expected number of queries that the algorithm uses is at least 
.

In fact, if  is the worst-case expected number of queries used by an algorithm that is
correct with probability  then one can show that for , .

Proof: Left as an exercise. 

With this we are ready to give the proof of the theorem:

Proof (of the theorem): We only give a sketch.

Fix the planner  with the said properties. Let  be a positive integer to be chosen later.
We construct a feature map  and  MDPs  that share 

 and  as state and action-spaces, respectively. Here  will be chosen
as the initial state where the planners will be tested from and  will be an absorbing
state with zero reward. The MDPs share the same deterministic transition dynamics: All
actions in  end up in  with probability one and all actions taken in  end up in 
with probability one. The rewards for actions taken in  are all zero. Finally, we choose
the reward of MDP  in state  to be

where the value of  is left to be chosen later.

Then, denoting by  the action returned by the planner when called with state , one can
see that the value of the policy induced at  in MDP  is , where  is the
distribution induced by the interconnection of the planner and MDP . Thus, for 

, the planner needs to return  so that . Hence, it needs at least 
 calls by the high-probability needle lemma.

1/2

p > 0
k

p

Ω(pk)

qk
p k ≥ 2 qk ≥ p( k+1

2 − 1
k

)

■

P k

φ : S × A → Rd k M1, … ,Mk

S = {s, send} A = [k] s

send

s send send send

send

Mi s

r
(i)
a (s) = I(a = i)r∗ ,

r∗ ∈ (0, 1]

A s

s Mi r∗Pi(A = i) Pi

Mi

r∗ = 2δ A Pi(A = i) ≥ 1/2
Ω(k)
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Finally, the JL feature matrix construction allows us to construct a feature-map for this
MDP as the action-value functions take the form , 
in this MDP. 

The previous result leaves open whether query-e�cient planners exist with a �xed
number of actions. Our next result shows that the problem does not get much easier in
this setting either.

The result is stated for �xed-horizon MDPs. Given an MDP , a policy ,
a positive integer  and state  of the MDP, let

be the total reward collected by  when it is used for  steps. The action-value functions 
 are de�ned similarly. The optimal -step value function is

The Bellman optimality operator  is de�ned via

The policy evaluation operator  of a memoryless policy  is

A policy  is -step optimal if . Also,  is greedy with respect to  if 
. The analogue of the fundamental theorem looks as follows:

Theorem (�xed-horizon fundamental theorem): We have  and for any , 
. Furthermore, for any  such that for ,  is greedy with

respect to , for any  it holds that  (i.e., the policy which in
step  uses , in step  uses , , in step  uses , after which it continues
arbitrarily) is -step optimal:

qπ(s, a) = I(a = i)r∗ qπ(send, a) = 0
■

A lower bound when the number of actions is constant

M = (S,A,P , r) π

h > 0 s ∈ S

vπh(s) = Eπ
s [

h−1

∑
t=0

rAt
(St)]

π h

qπh : S × A → R h

v∗
h(s) = sup

π
vπh(s) , s ∈ S .

T : RS → RS

Tv(s) = max
a∈A

ra(s) + ⟨Pa(s), v⟩ .

Tπ : RS → RS π

Tπv(s) = ∑
a∈A

π(a|s) (ra(s) + ⟨Pa(s), v⟩) .

π h vπ
h

= v∗
h π v : S → R

Tπv = Tv

v∗
0 ≡ 0 h ≥ 0

v∗
h+1 = Tv∗

h π∗
0, … ,π∗

h, … i ≥ 0 π∗
i

v∗
i h > 0 π = (π∗

h−1, … ,π∗
0, …)

1 π∗
h−1 2 π∗

h−2 … h π∗
0

h
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Proof: Left as an exercise. Hint: Use induction. 

In the theorem our earlier notion of policies is slightly abused:  is only speci�ed for 
steps. In any case, according to this result for a �xed horizon , the natural analogue
for memoryless policies are these -step nonstationary memoryless policies. Let us
denote the set of these by .

In the next result, we will only care about optimality with respect to a �xed initial state 
. Then, without loss of generality, we also assume that the set of states 

reachable from  in  steps are disjoint:  for  (why?). It follows
that we can also �nd a memoryless policy  that is optimal at : . In
fact, one can even �nd a memoryless policy that also satis�es

simultaneously for all . Furthermore, the same holds for the action-value
functions:

Thus, the natural analogue that all action-value functions are well-approximated with
some feature-map is that there are feature-maps  such that for 

,  and for any memoryless policy , the -step
action value function of , when restricted to , is well-approximated by the linear
combination of the basis functions induced by . Since we will not need  outside of 

, in what follows, we assume that these are restricted to . Writing  for the feature
matrix induced by  (the rows of  are the feature vectors under  for some ordering
of the state-action pairs from ), we rede�ne  as follows:

Since we changed the objective, we also need to change the de�nition of -sound
online planners: These planners now need to induce policies that are -suboptimal or
better when evaluated with the -horizon undiscounted total reward criterion from the
designated start-state  provided that the MDP satis�es . In what follows,
we call these planners -sound for the -step criterion.

vπh = v∗
h .

■

π h

H > 0
H

ΠH

s0 ∈ S Sh

s0 h ≥ 0 Sh ∩ Sh′ = ∅ h ≠ h′

π s0 vπH(s0) = v∗
H(s0)

vπH−i(s) = v∗
H−i(s), s ∈ Si (6)

0 ≤ i ≤ H − 1

qπH−i(s, a) = q∗
H−i(s, a), s ∈ Si, a ∈ A, 0 ≤ i ≤ H − 1 . (7)

(φh)0≤h≤H−1

0 ≤ h ≤ H − 1 φh : Sh × A → Rd π H − h

π Sh

φh qπH−h

Sh Sh Φh

φh Φh φh

Sh × A ε∗(M, Φ)

ε∗(M, Φ) := sup
π memoryless

max
0≤h≤H−1

inf
θ∈Rd

∥Φhθ − qπH−h∥∞ . (8)

(δ, ε)
δ

H

s0 ε∗(M, Φ) ≤ ε

(δ, ε) H
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With this, we are ready to state the main result of this section:

Theorem (Query lower bound: small action sets, �xed-horizon objective): For , 
 and positive integer , let

Then, for any , , positive integers  such that  and for
any online planner  that is -sound for MDPs with at most  actions and the -
step criterion, there exists a “featurized-MDP”  with  actions and rewards in 

 such that when interacting with a simulator of , the expected number of
queries used by  is at least

provided that  (“large horizons”), while it is

otherwise (“small horizon”).

In words, if the horizon is large enough, the previous exponential-in-  lower bound
continues to hold, while for horizons that are smaller, a lower bound that is exponential

in the horizon holds. Note that above  hides logarithmic terms. Note that the
condition  is reasonable: We do not expect the feature-space dimension to be
comparable to .

Proof: Fix a planner  with the required properties. We consider  MDPs 
 that share the state space  and action space . Here, by

convention,  is a singleton with the single element , which will play the role of the
start state . The transition dynamics are also shared by these MDPs: When in state 

 and action  is taken, the next state is  when , while if 
 with some  then  and when 

ε > 0
0 < δ ≤ 1/2 d

u(d, ε, δ) = ⌊exp(
d( ε

2δ )2

8
)⌋ .

ε > 0 0 < δ ≤ 1/2 A,H, d d ≤ AH

P (δ, ε) A H

(M,φ) A
[0, 1] (M,φ)

P

~
Ω(

u(d, ε, δ)

d(ε/δ)2
)

AH > u(d, ε, δ)

~
Ω(

AH

H
)

d

~
Ω(⋅)

d ≤ AH

AH

P k = AH

M1, … ,Mk S = ∪0≤h≤HA
h

A

A0 ⊥
s0

s ∈ S a ∈ A s′ = (a) s =⊥
s = (a1, … , ah) 1 ≤ h ≤ H − 1 s′ = (a1, … , ah, a) h = H
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then the next state is  (ever state in  is absorbing). The
MDPs di�er in their reward functions. To describe the
rewards let  be a bijection from  to .

Now, �x  and de�ne  by 
. Let , , 

, , . Then, in MDP 
,  while  for any other state-

action pair.

Note that the optimal reward in  steps from  is  and the only policy that achieves
this reward is the one that goes through the states in . We can visualize
MDP  as a tree, as seen on the �gure on the right. The green nodes on the �gure
correspond to the states . Note also that  for .

We will now describe the action-value functions of the memoryless policies in  as this
will be useful later. Fix . Then, , by our convention, is de�ned over 

. Then, for any  and ,

Note that here . We see that for each stage ,

there is only one state-action pair such that the value of  is nonzero, and in this case
the value is in the  interval.

Now, since the planner induces a policy with suboptimality , for the action  it returns it
holds that  (any other action than  incurs zero total expected reward
in our construction). Then with  fresh calls, by taking
the action  that is returned most often in these calls, we get .
Repeating this process in state  we get action  so that

Now, repeating again the process in state  gives , etc. Eventually, we
get a sequence of actions  such that 

.

s AH

f [k] AH

1 ≤ i ≤ k (a∗
0, … , a∗

H−1)
f(i) = (a∗

0, … , a∗
H−1) s∗

0 = s0 s∗
1 = (a∗

0)
s∗

2 = (a∗
0, a∗

1) … s∗
H = (a∗

0, … , a∗
H−1) Mi

ra∗
H−1

(s∗
H−1) = 2δ ra(s) = 0

H ⊥ 2δ
s∗

0, s∗
1, … , s∗

H−1

Mi

s∗
0, s∗

1, … , s∗
H−1, s∗

H Sh = A
h 0 ≤ h ≤ H

Mi

0 ≤ h ≤ H − 1 qπH−h

Sh s ∈ Sh(= Ah) a ∈ A

qπH−h(s, a) =
⎧⎪⎨⎪⎩2δ , if h = H − 1, s = s∗

H−1, a = a∗
H−1 ;

vπ
H−h−1(s∗

h+1) , if h < H − 1, s = s∗
h, a = a∗

h ;
0 , otherwise .

(9)

0 ≤ vπ
H−h−1(g(s, a)) ≤ 2δ 0 ≤ h ≤ H − 1

qπH−h

[0, 2δ]

δ A

P(A ≠ a∗
0) ≤ 1/2 a∗

0

b ≥ log(2H)/ log(2) = log2(2H)
A0 P(A0 ≠ a∗

0) ≤ 1/(2H)
S1 = g(s0,A0) A1

P(A0 ≠ a∗
0 or A1 ≠ a∗

1) = P(A0 ≠ a∗
0) + P(A0 = a∗

0,A1 ≠ a∗
1)

≤ P(A0 ≠ a∗
0) + P(A1 ≠ a∗

1|A0 = a∗
0) ≤

1
2H

+
1

2H
.

S2 = g(S1,A1) A2

A0, … ,AH−1

P(A0 ≠ a∗
0 or  …  or AH−1 ≠ a∗

H−1) ≤ 1/2
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By our previous argument (reduction to the “needle” problem), this whole process needs 
 queries. If the expected number of queries issued by  is , the expected number of

queries issued here is . Hence,

Let us now consider a choice for  such that . For 

choose �rst a “JL feature matrix”  such that Eq.  holds. Then let 

. Choose  if  and choose 

, otherwise. Then, by Eq. , for , 
 and for 

, . Hence,  holds if we set 
.

From Eq. ,  exists if  and

Recall that . Thus, the required claim holds for the case when  (“small

horizon case”). In the opposite case (“large horizon”), let  be the largest positive

number such that  holds. Repeating the above argument with horizon  gives the

lower bound  which �nishes the proof. 

For completeness, we include a proof of the JL lemma. The proof uses the so-called
probabilistic method The idea of this is that sometimes it is easier to establish the
existence of some “good con�guration” (like the nearly orthogonal vectors on the unit
sphere in the JL lemma) by establishing that such a con�guration has positive probability
under some probability distribution over possible con�gurations.

In our case, this works as follows: Let  be random vectors, each uniformly
distributed on the -dimensional unit sphere and so that the distinct vectors in this
sequence are pairwise independent of each other. Take . If we show that 

 holds with probability at least , by a union bound over the 

Ω(k) P q

H log2(2H)q

q = Ω(
k

log2(2H)H
) .

Φ = (Φh)0≤h≤H−1 ε∗(M, Φ) ≤ ε Φh
~
Φh ∈ R|Sh|×d (5)

Φh = √2δ
~
Φh θh = vπ

H−h−1(s∗
h+1)φh(s∗

h, a∗
h)/(2δ) h < H − 1

θh = φh(s∗
h, a∗

h) (9) (s, a) ≠ (s∗
h, a∗

h)
|φh(s, a)⊤θh − qH−h(s, a)| ≤ |vπ(s∗

h+1)| | ~φh(s, a)⊤ ~φh(s∗
h, a∗

h)| ≤ 2δτ
(s, a) = (s∗

h, a∗
h) φh(s, a)⊤θh = qH−h(s, a) ε∗(M, Φ) ≤ ε

τ = ε/(2δ)

(4)
~
Φh d ≤ k

k ≤ u := ⌊exp(
d( ε

2δ )2

8
)⌋ .

k = AH AH ≤ u
~
H

A
~
H ≤ u

~
H

q = Ω( A
~
H

log2(2
~
H)

~
H
) = Ω( u

log2(2
~
H)

~
H
) , ■

Proof of the JL lemma

V1, … ,Vk

d

i ≠ j

|⟨Vi,Vj⟩| ≤ τ 1 − 1/k2
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 pairs , it follows that  holds with
probability at least , from which, the lemma follows.

Thus, it remains to show that the angle between the random vectors  and  is “small”
with the claimed probability. Since the uniform distribution is rotation invariant and 
and  are independent of each other,  has the same distribution as 

. To see this take a rotation  that rotates  to ; then 
. Now, since  and  are independent of each

other,  is still uniformly distributed on the sphere, hence,  and 
share the same distribution.

A tedious calculation shows that for any ,

(The idea of proving this is to notice that if  is -dimensional standard normal variable
then  is uniformly distributed on the sphere. Then, one proceeds using
Cherno�’s method.) The result now follows from  by choosing  so that 
holds. 

The lower bound for the discounted case is missing the planning horizon. In the �xed-
horizon setting, the lower bound is again missing the horizon when the horizon is
large. It remains to be seen whether the extra “horizon terms” in Eq.  are necessary.

In any case, the main conclusion is that even when we require “strong features”, high-
accuracy planning is intractable.

The reader familiar with the TCS literature may recognize a close resemblance to
questions studied there which are concerned with the existence of
“fully polynomial time approximation schemes” (FPTAS).

There are many open questions. For one, is there a counterpart of the second theorem
for the discounted setting?

The idea of using the Johnson-Lindenstrauss lemma in this context is due to
Du, Kakade, Wang and Yang (DKWY, for short). The �rst theorem is a variant of a result

k(k − 1)/2 1 ≤ i < j ≤ k maxi≠j |⟨Vi,Vj| ≤ τ

1/2

Vi Vj

Vi

Vj ⟨Vi,Vj⟩

⟨e1,V1⟩ = V11 ∈ [−1, 1] R Vi e1

⟨Vi,Vj⟩ = ⟨RVi,R
−1Vj⟩ = ⟨e1,R−1Vj⟩ R Vj

R−1Vj ⟨e1,R−1Vj⟩ ⟨e1,V1⟩

x ≥ 6

P(V 2
11 > x/d) ≤ exp(−x/4) . (10)

X d

V = X/∥X∥2

(10) x τ 2 = x/d
■

Notes

•

(3)

•

•

•

Bibliographical notes
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from this paper. The second theorem is a variation of Theorem 4.1 from the paper of Du et
al. mentioned above who prove the analoge result for global planners. The proof of the
lemma also follows the proof given in this paper. The proof of inequality  is given in a
paper of Dasgupta and Gupta, which also gives the “full version” of the Johnson-
Lindenstrauss lemma which states that logarithmically many dimensions are su�cient to
keep pairwise distances between a �nite set of points.

Dasgupta, Sanjoy; Gupta, Anupam (2003), “An elementary proof of a theorem of
Johnson and Lindenstrauss” link, Random Structures & Algorithms, 22 (1): 60–65

The presentation of the �rst result which is for “bandits” (�xed horizon problems with 
) follows closely that of a paper by Lattimore, Weisz and yours truly. This, and a

paper by van Roy and Dong were both prompted by the DKWY paper, whose initial version

focused on the case when , which made the outlook for designing robust RL
methods quite bleak. While it is true that in this high-precision regime nothing much can
be done (unless further restricting the features), both papers emphasized that the
hardness result disappears when the algorithm can deliver  optimal policies with 

.

Copyright © 2020 RL Theory.

(10)

•

H = 1

δ ≪ √dε

δ

δ ≳ √dε
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RL Theory

Planning in MDPs / 10. Planning under  realizability

The lesson from the last lecture is that e�cient planners are limited to induce policies whose
suboptimaly gap is polynomially larger than the misspeci�cation error of the feature-map
supplied to the planner. We have also seen) that if we accept this polynomial in the feature-
space-dimension error ampli�cation, a relatively straightforward adaptation of policy iteration
gives rise to a computationally e�cient (global) planner – at least, when the planner is furbished
with the solution to an underlying optimal experimental design problem. In any case, the planner
is query e�cient.

All this was shown in the context when the misspeci�cation error is relative to the set of action
value functions underlying all possible policies. In this lecture we look into whether this error
metric could be changed so that the misspeci�cation error is measured by how well the optimal
action-value function, , is approximated by the features, while still retaining the positive
result. As the negative result already implies that there are no e�cient planners unless the
suboptimality gap of the induced policy is polynomially larger than the approximation error, we
look into the case when the optimal action-value function is perfectly representable with the
features supplied to the planner. This assumption is also known as “ -realizability”, or, “
linear realizability”, if we want to be more speci�c about the nature of the function
approximation technique used.

We consider �xed horizon online planning in large �nite MDPs . As usual, the
horizon is denoted by  and we consider planning with a �xed initial state , as in the
previous lecture. Let us denote by  the states that are reachable from  in  steps. As
before, we assume that  when . Recall that in this case the action-value
functions depend on the number of steps left, of the current stage. For a �xed , let

 be the optimal action-value function with  stages in the process, 
stages left. Since we do not need the values of  outside of , we abuse notation by
rede�ning it restricted to this set.

Important note: The indexing of  used here is not consistent with the indexing used in the
previous lecture, where it was more convenient to index value functions based on the number
of stages left.

The planner will be given a feature map  for every stage  such that 
. The realizability assumption means that

q∗

10. Planning under  realizabilityq∗

q∗

q∗ q∗

Planning under  realizabilityq∗

(S,A,P , r)
H > 0 s0

Si s0 0 ≤ i ≤ H

Si ∩ Sj = ∅ i ≠ j

0 ≤ h ≤ H − 1
q∗
h : Sh ×A → R h H − h

q∗
h Sh ×A

q∗
h

ϕh 0 ≤ h ≤ H − 1
ϕh : Sh ×A → R

d

∥ ∥ ( )
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Note that we demand that the same parameter vector is shared between all stages. As it turns
out, this makes our result stronger. Regardless, at the price of increasing the dimension from  to

, one can always assume that the parameter vector is shared. Since we will give a negative
result concerning the query-e�ciency of planners, we allow the planners access to the full
feature-map: The negative result still applies even if the planner is allowed to perform any sort of
computation with the feature-map during or before the planning process.

For , we call an online planner -sound for the -step criterion if for any MDP  and
feature map  pair such that the optimal action-value function of  is realizable with
the features  in the sense that  holds, the planner induces a policy that is -suboptimal or
better when evaluated with the -horizon undiscounted total reward criterion from the
designated start-state  in MDP . Note that this is very much the same as the previous 

 soundness criterion, except that the de�nition of the approximation error is relaxed,
while we demand .

The result below uses MDPs where the immediate reward (obtained from the simulator) can be
random. The random reward is used to make the job of the planners harder and it allows us to
consider MDPs with deterministic dynamics. (The result could also be proven for MDPs with
deterministic rewards and random transitions.)

The usual de�nition of MDPs with random transitions and rewards is in a way even simpler:
Such a (�nite) MDP is given by the tuple  where  is a collection of
distributions over state-reward pairs. In particular, for all state-action pairs , 

. Letting  (i.e.,  is drawn from  at random),
we can recover  as the distribution of  and  as the expected value of . That the
reward can be random forces a change to the notion of the canonical probability spaces, since
histories now also show include rewards,  incurred in each time step .
With appropriate modi�cations, we can nevertheless still introduce  and the corresponding

expectation operator, , as well. The natural de�nition of the value of a policy  at state , say,

in the discounted setting is then . However, it is easy to see that for any 
, , and, as such, nothing changes in the theoretical results derived so

far.

For  reals, let . The main result of this lecture is as follows:

Theorem (worst-case query-cost is exponential under -realizability): For any  large
enough and any online planner  that is -sound for the -horizon planning problem,
there exists a triplet  where  is a �nite MDP with random rewards taking values in 

inf
θ∈Rd

max
0≤h≤H−1

∥Φhθ − q∗
h∥∞ = 0 . (1)

d

dH

δ > 0 δ H M

ϕ = (ϕh)h M

ϕ (1) δ

H

s0 M

(δ, ε = 0)
ε = 0

M = (S,A,Q) Q = (Qa(s))s,a

(s, a)
Qa(s) ∈ M1(S × R) (S ′,R) ∼ Qa(s) (S ′,R) Qa(s)

Pa(s) S ′ ra(s) R

R0,R1, … t = 0, 1, …
P
π
μ

E
π
μ π s

vπ(s) = E
π
s [∑∞

t=0 γ
tRt]

t ≥ 0 E
π
μ[Rt] = E

π
μ[rAt

(St)]

a, b a ∧ b = min(a, b)

q∗ d,H
P 9/128 H

(M, s0,ϕ) M
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 and deterministic transitions,  is a state of this MDP and  is a -dimensional feature-
map such that  holds for the optimal action-value function  and the
expected number of queries  that  uses when interconnected with  satis�es

Note that with random rewards with no control on their tail behavior (e.g., unbounded variance)
it would not be hard to make the job of any planner arbitrarily hard. As such, it is quite important
that the MDPs that are constructed for the result, the rewards, while random, lie in a �xed
interval. Note that the speci�c choice of this interval does not matter: If there is a hard example
with some interval, that example can be translated into another by shifting and scaling, and at
the price of introducing an extra dimension in the feature map to account for the shifts. A similar
comment applies to  (which, nevertheless, needs to be scaled to the range of the
rewards).

Rather than giving the full proof, we will just explain the main ideas
behind it. At a high-level, the proof merges the ideas behind the lower
bound for the small action-set case and the lower bound of the large
action-set case. That is, we will consider an action set that is
exponentially large in . In particular, we will consider action sets that
have  elements.

Note that because realizability holds, having a large action set but with a
trivial dynamics (as in the lower bound in the last lecture) does not lead
to the lower bound of the desired form. In particular, if the dynamics are
trivial (i.e., , see the �gure on the right) then the optimal action
to be taken at  does not depend on what actions are taken at later
stages and can be e�ciently found by just maximizing for the reward
received in that stage, which can be done e�ciently due to our realizability assumption, even in
the presence of random rewards. Whether an example exists with only a few actions but with a
more complicated dynamics remains open. With the construction provided here (which is based
on tree dynamics and zero intermediate reward in the tree), this clearly fails, as we will make it
clear below.

In any case, since the “chain dynamics” does not work, the next simplest approach is to have a
tree, but with exponentially many actions in every node. Since this creates many many states (

 states at stage ) the next question then is how to ensure realizability. There are two
issues: We need to be able to keep the dimension �xed at  at every stage and somehow we will

[0, 1] s0 ϕ d

(1) q∗ = (q∗
h)0≤h≤H−1

q P (M, s0,ϕ)

q = eΩ(d∧H)

δ = 9/128

The main ideas of the proof

d

k = eΘ(d)

Si = si
s0

eΘ(dh) h

d
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need to have a way of controlling which action should be optimal at each state at each stage.
Indeed, realizability means that we need to ensure that for all  and 

,

Here,  stands for the state that is reached by taking action  in state  (in the tree, every node,
or state is uniquely indexed by the action sequence that reaches it). Now, in the de�nition of ,
for all , we also have , which calls for the need to know the identity
of the maximizing action. What is more, since the solution to the Bellman optimality equations is
unique, if we guarantee that  holds at all state-action pairs for  with
some features and parameter vectors, it also follows that  for all , that is,  is
realizable with the features.

A simple approach to resolve all of these issues is to let a �xed action  be the optimal
action at all the states, together with using the JL features from the previous lecture (the identity
of this action is of course hidden from the planner). In particular, the JL feature-matrix lemma
from the previous lecture furnishes us with  -dimensional unit vectors  such that for 

,

Fix these vectors. That  should be optimal at all states  is equivalent to that

In our earlier proof we used  and . Will this still work? Unfortunately, it
does not. The �rst observation is that from this it follows that for any , , ,

As such, for almost all the actions , we expect  to be close to . Now, under this
choice we also have that  for all states and all stages . This creates
essentially the same problem as what we saw above with the trivial chain dynamics. In particular,
from  we get that . As such, we expect  to be close to either  or 

 (since  is close to ). Putting aside the issue that we wanted the immediate
reward be in , we see that if the reward noise is not large,  and thus the identity of  can
be obtained with just a few queries: The signal to noise ratio is just too good!

This problem replicates itself at the very last stage: Here,  for any state , hence

0 ≤ h ≤ H − 1
(s, a) ∈ Sh ×A

q∗
h(s, a) = ra(s) + v∗

h+1(sa) (2)

sa a s

v∗
h

h v∗
h(s) = maxa∈A q∗

h+1(s, a)

(2) qh(s, a) = ⟨ϕh(s, a), θ∗⟩
qh = q∗

h h ≥ 0 q∗

a∗ ∈ A

k d (ua)a∈A

a ≠ a′

|⟨ua,u′
a⟩| ≤

1

4
.

a∗ s

q∗
h(s, a) ≤ q∗

h(s, a∗)(= v∗
h(s)), 0 ≤ h ≤ H − 1, s ∈ Sh, a ∈ A . (3)

ϕh(s, a) = ua θ∗ = ua∗

h s a

q∗
h(s, a) = ⟨ua∗ ,ua⟩ .

a |q∗
h(s, a)| 1/4

v∗
h(s) = 1 0 ≤ h ≤ H − 1

(2) q∗
h(s, a) = ra(s) + 1 ra(s) −3/4

−5/4 |q∗
h(s, a)| 1/4

[0, 1] θ∗ a∗

v∗
H(s′) = 0 s′

q∗
H−1(s, a) = ra(s) (4)
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for any  pair. Unless we choose  to be small, say, , a planner will succeed
with fewer queries than in our desired bound.

This motivates us to introduce a scaling of the features (recall that the parameter vector is
shared between the stages) with some scaling factors. For maximum generality, we allow for the
scaling factor of the feature vector of  to depend on  itself (since states
between stages are not shared, scaling can depend on the stage with this choice). Let 

 be the scaling factor we intend to use with  where we intend to keep  in a
constant range (so the scaling with the stage index works as intended) while we aim to use 

.

Now, we can explain the need for many actions. By the Bellman optimality equation  we have
that for any suboptimal action, ,

where  uses that . From this we see that close to the initial state  the
reward gaps are of constant order. In particular, if there were only a few actions per state, a
planner could identify the optimal action by �nding the action whose reward is signi�cantly
larger than that of the others. By choosing to have many actions, the planner faces a “needle-in-
a-haystack” situation, which makes their job hopeless even with perfect signal (no noise).

The next idea is to force “clever” planners to only experiment with actions in the last stage.
Since here, the signal-to-noise ratio will be very poor, if we manage to achieve this, even clever
planners will need to use a large number of queries. A simple way of forcing this is to choose all
the rewards while transitioning in the tree and taking suboptimal actions to be identically zero
except for stage , where, in accordance to our earlier plan, the rewards are chosen at
random to ensure consistency but the signal to noise ratio will be poor.

Since the dynamics in the tree is known, and it is known that all rewards are zero with the
possible exception of when using the optimal action (one of exponentially many actions and is
thus hard to �nd), planners are either left with either solving the needle in a haystack problem of
identifying the optimal action by randomly stumbling upon it, or they need to experiment with
actions in the last stage. That the rewards are chosen to be identically zero is not critical: From
the point of view of this argument, what is critical is that they are all the same.

It remains to be seen that consistency can be achieved and also that the optimal action at  has a
large value compared to the values of suboptimal actions at the same state. Here, we still face
some challenges with consistency. Since we want the immediate rewards to belong to the 
interval, all the action values have to be nonnegative. As such, it will be easier if we introduce an
additional bias component  in the feature vectors, which we allow to scale with the stage.

To summarize, we let

(s, a) q∗
H−1(s, a) e−Θ(H)

(s, a) ∈ Sh ×A (s, a)

(3/2)−h+1σsa (s, a) σsa

ϕh(s, a) = (3/2)−h+1σsaua

(2)
a

ra∗(s) − ra(s) = q∗
h(s, a∗) − q∗

h(s, a) ≈ (3/2)−h⟨ua∗ − ua,ua∗⟩ ≥ (3/2)−h(3/4),

≈ σsa ≈ σsa∗ ≈ const s0

h = H − 1

s0

[0, 1]

ch
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while we propose to use

It remains to show that  and  can be satis�ed with , while also
keeping the suboptimal gap of  at  large, and while the last stage rewards ( ) are in 

and are of size  as planned.

Assume for a moment that  is optimal in all states, i.e., that  holds. Then,  is also optimal
in state , hence, under ,  for any  is equivalent to

where we also used that by assumption  because . Plugging in the de�nitions,

De�ne  so that

with  (i.e.,  is a decreasing geometric sequence) This has two implications: 
 simpli�es to

and also for the last stage rewards, from  we get

Clearly, if , since for , ,  while
also .

With this, to satisfy , on the one hand we choose to de�ne  with the following “downward
recursion” in the tree: For any  in the tree and actions ,

ϕh(s, a) = (ch, (3/2)−h+1σsau
⊤
a )⊤ .

θ∗ =
1

3
(1,u⊤

a∗)⊤ .

(3) (2) qh(s, a) := ⟨ϕh(s, a), θ∗⟩
a∗ s0 (4) [0, 1]

e−Θ(H)

a∗ (3) a∗

sa q∗
h = qh (2) a ≠ a∗

qh(s, a) = qh+1(sa, a∗)

ra(s) = 0 a ≠ a∗

σsa,a∗ = (
3

2
)

h

(ch − ch+1) +
3

2
σsa⟨ua,ua∗⟩ . (5)

(ch)0≤h≤H−1

(
3

2
)

h

(ch − ch+1) =
5

8
.

CH−1 = 1
2 (

3
2 )

−H
ch

(5)

σsa,a∗ =
5

8
+

3

2
σsa⟨ua,ua∗⟩ , (6)

(4)

ra(s) =
1

3
(

3

2
)

−H

(
1

2
+ σsa

3

2
⟨ua,ua∗⟩) .

σsa ∈ [−4/3, 4/3] a ≠ a∗ |⟨ua,ua∗⟩| ≤ 1/4 ra(s) ∈ [0, (3/2)−H/3]
ra∗(s) ∈ [0, 1]

(2) σsa

s a, a′

σsa,a′ =
5
8

+
3
2
σsa⟨ua,ua′⟩ . (7)
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Note that this is consistent with . The next challenge is to show that  stays within a
constant range. In fact, with the above de�nition, this will not hold. In particular, when ,
the right-hand side can be as large as , which means that the scaling
coe�cients will exponentially increase with a base of . Note, however, that if , then
provided that  (which can be ensured at the root by choosing  for all
actions ),

and thus  will also hold.

Hence, we modify the construction so that the de�nition  is never needed for . This is
achieved by changing the dynamics: We introduce a special set of states, , the exit
lane. Once, the process gets into this lane, there is now return and in fact all the remaining
rewards up the end are zero. Speci�cally, all the actions in  lead to state  and we set the
feature vector of all states in the exit-lane zero:

This way, regardless the choice of the parameter vector, we ensure that the Bellman optimality
equations hold at these state and the optimal values are correctly set to zero.

The exit lane is introduced to remove the need to use  with repeat actions. In particular, for
any  with some , say,  (i.e.,  is obtained by following these actions)
then if for , the next state is . Since the optimal value of  is zero and we
don’t intend to introduce an immediate reward, we set

making the value of repeat actions zero. The next complication is that this ruins our plan to keep
 optimal at all states: Indeed,  could be applied multiply times in a path from  to a leaf of

the tree, and by the second application, the new rule forces the value of  to be zero. Hence, we
need to modify this rule when the action is .

Clearly, whether a suboptimal action, or  is repeated is problematic for the recursive de�nition
of . Hence, it is better if  is also forced to use the exit lane. Thus, if  is used in  with 

, the next state is . However, we do not zero out , but keep the recursive de�nition
and we rather introduce an immediate reward to match . It is not hard
to check that this reward is also in the  range. Note that here if  then by
de�nition . This completes the description of the structure of the MDPs.

That the action gap at  is large follows from the choice of the JL feature vectors.

(6) σsa

a = a′

5/8 + 3/2σsa ≥ 3/2σsa

(3/2) a ≠ a′

σsa ∈ [1/4, 1] σs0,a = 1
a

1

4
=

5

8
−

3

8
≤

5

8
+

3

2
σsa⟨ua,ua′⟩ ≤

5

8
+

3

8
≤ 1 ,

σsa,a′ ∈ [1/4, 1]

(7) a = a′

e1, … , eH

eh eh+1

ϕh(eh, a) = 0 .

(7)
s ∈ Sh h ≥ 1 s = (a1, … , ah) s

a ∈ {a1, … , ah} eh+1 eh+1

ϕh(s, a) = 0 ,

a∗ a∗ s0

a∗

a∗

a∗

σsa a∗ a∗ s ∈ Sh

h ≥ 0 eh+1 σsa∗

qh(s, a∗) = ⟨ϕh(s, a∗), θ∗⟩

[0, 1] s = (a1, … , ah)
a∗ ∉ {a1, … , ah}

s0
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It remains to be seen that  is indeed the optimal action at any state. This boils down to checking
that for , . When  is a repeat action, this is trivial. When

 is not a repeat action, we have

where we used that  and  and thus  by the
choice of  and since .

Let  denote the MDP constructed this way when the optimal action is  (the feature maps, of
course, are common between these MDPs). For a formal proof, one also needs to argue that
planners that do not use many queries cannot distinguish between these MDPs. Intuitively, this is
because such planners will receive, with high probability, identical observations under di�erent
MDPs in this class. As such, these planners can at best randomly choose an action (“needle in a
haystack”) and since in MDP  only action  incurs high values, they cannot induce a policy
with a near-optimal value.

In the construction given the number of actions was allowed to scale exponentially with the
dimension. The above proof would show a separation between the query and computation
complexity of planning, if one could demonstrate that there is a choice of the JL feature vectors
when the optimization problems

admits a computationally e�cient solver regardless of the choice of  and  (for
simplicity, we suppress dependence on ). Whether such a solver exist will depend on the choice
of the feature-map and this is a fascinating question on its own. One approach to arrive at such a
solver is to rewrite this problem as the problem of �nding

where  is the convex hull of the feature vectors . Provided that this problem
admits an e�cient solution and given any extreme point of , we can e�ciently recover an
action  such that  (this amounts to “inverting” the feature map), the �rst
problem can also be solved e�ciently.

Note that  is a linear optimization problem over a convex set  and the question whether this
problem admits an e�cient solver lies at the heart of computer science. The general lesson is that
the answer can be expected to be yes when  has some “convenient” description other than the

a∗

a′ ≠ a∗ qh+1(sa, a∗) − qh+1(sa, a′) ≥ 0 a′

a′

qh+1(sa, a∗) − qh+1(sa, a′) =
1

3
(

3

2
)

−h

[σsa,a∗ − σsa,a′⟨ua′ ,ua∗⟩] ≥
1

3
(

3

2
)

−h

[
1

4
−

1

4
] = 0

σsa,a∗ ≥ 1/4 1/4 ≤ σsa,a′ ≤ 1 σsa,a′⟨ua′ ,ua∗⟩ ≥ − 1
4

(ua)a a ≠ a′

Ma∗ a∗

Ma a

Computation with many actions

arg max
a∈A

⟨ϕ(s, a), θ⟩

θ ∈ R
d s ∈ S

h

arg max
v∈Vs

⟨v, θ⟩ (8)

Vs ⊂ R
d {ϕ(s, a)}a∈A

v ∈ Vs

a ∈ A ϕ(s, a) = v

(8) Vs

Vs
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one that is used to de�ne it. The second problem of inverting the feature map is known as the
“decomposition problem” and the same conclusions hold for this problem.

It is possible to modify the construction to make it work in the discounted setting. The paper
cited below shows how.

Back to the �nite horizon setting, for an upper bound, one can employ the least-squares value
iteration algorithm with -optimal design (LSVI-G), which we have met in Homework 2.
What results is that to get a -sound (global) planner with this approach,

queries are su�cient (and the compute cost is also of similar order). We see that as far as the
exponents in the lower and upper bounds are concerned, in the upper bound the exponent is 

 while in the lower bound it is . Thus, there remains a logarithmic gap
between them when , while the gap is unbounded when , i.e., for long horizon
problems. In particular, in the constant dimension and long-horizon featurized planning
problem, the LSVI-G algorithm seems to be suboptimal because it calculates the optimal action-
value function stage-wise. One conjectures that the upper bound for LSVI-G is tight, while the
lower bound in this lecture is also essentially correct. This would means that there is an alternate
algorithm that could perform much better than LSVI-G in large-horizon planning with constant
feature-dimension. Clearly, for the speci�c construction used in this lecture, a planner that tries
all actions, say at , will �nd the optimal action and the cost of this planner is independent of
the horizon. Hence, at least in this case, the lower bound can be matched with an alternate
algorithm. One may think that this problem is purely of theoretical interest. To counter this note
that long-horizon planning is a really important practical question: Many applications require
thousands of steps, if not millions, while perhaps the feature space dimension does not need to
be very large. Whether there exist an algorithm that works better than LSVI-G thus remains to be
a fascinating open problem with good potential for having a real impact on applications.

For in�nite horizon undiscounted problems and  realizability, there is a simple example
that shows that with  actions and -dimensional features, any query e�cient planner
that guarantees a constant suboptimality gap needs  queries per state. This is based
on a shortest path problem on a regular grid. Here, the obstruction is simply algebraic: There
is no noise in either the transitions or the rewards.

This lecture is entirely based on the paper

Notes

•

•
G

δ

O(
H 5(2d)H+1

δ2
)

Θ(H log2(d)) O(H ∧ d)
H ≪ d H ≫ d

s0

• v∗

Θ(d) d

Ω(2d/d)
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RL Theory

Planning in MDPs / 11. Planning under  realizability (TensorPlan I.)

In the last lecture we saw that under  linear realizability, query-e�cient �xed-horizon
online planning with a constant suboptimality gap is intractable provided that there is no
limit on the number of actions. In particular, the MDPs that were used to show

intractability use  actions, where  is the dimension of the feature-map that realizes
the optimal action-value function. At the end of the lecture, we also noted that
intractabality also holds for undiscounted in�nite horizon problems under  linear
realizability in the regime when the number of actions scales linearly with . In this
lecture we further dissect  realizability, but return to the �xed horizon setting and we
will consider the case when the number of actions is �xed. As it turns out, in this case,
query-e�cient online planning is possible.

Before giving the details of this result, we need to �rm up some and re�ne other
de�nitions. First,  realizability under a feature map  in the -
horizon setting means that

where  is the optimal-value function when  steps are left (in particular, ).
Again, this uses the indexing introduced in the previous lecture. In what follows, without
the loss of generality we assume that the feature map is such that all the feature-vectors
lie within the a ( -norm) ball of radius one. When realizability holds with a parameter
vector bounded in -norm by , we say that  is -realizable under the feature map .

We also slightly modify the interaction protocol between the planner and the simulator,
as shown on the �gure below. The main new features are introducing stages, and
restricting the planners to access states and features only through local calls to the
simulator.

v∗

11. Planning under  realizability
(TensorPlan I.)

v∗

q∗

eΘ(d) d

v∗

d

v∗

v∗ ϕ = (ϕh)0≤h≤H−1 H

inf
θ∈Rd

max
0≤h≤H−1

∥Φhθ − v∗
h∥∞ = 0 , (1)

v∗
h H − h v∗

H = 0

2
2 B v∗ B ϕ



5/16/22, 11:22 PM 11. Planning under $v^*$ realizability (TensorPlan I.) - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec11/ 2/10

  
Illustration of the interaction protocol between the planner and the simulator.

Because in �xed-horizon problems the stage index in�uences what actions should be
taken, the planner is called with an initial state  and a stage index . For de�ning the
policy induced the planner, it is assumed that the planner is �rst called with  at
some state, then it is called with  with a state obtained following a transition by
taking the action returned by the planner, etc. While interacting with the simulator, the
planner is restricted to use only states that it has encountered before. Also, the planner
can feed a stage index to the simulator, to get the features of the next state corresponding
to the incremented input stage index. There is no other access to the features. Note also
that just like in the previous lecture, we allow the MDPs to generate random rewards.

In this setting a -sound planner is one which, under the above protocol, induces a policy
of the MDP whose simulator it interacts with which is at most -suboptimal.

Theorem (query-e�cient planning under -realizability): For any integers 
and reals , there exists an online planner  with the following properties:

s0 h

h = 0
h = 1

δ

δ

v∗ A,H > 0
B, δ > 0 P

The planner  is -sound for the -horizon planning problem and the class of MDP-
feature-map pairs  such that  is -realizable under  and  has at most 
actions and its rewards are bounded in ;

1 P δ H

(M,ϕ) v∗ B ϕ M A

[0, 1]

The number of queries used by the planner in each of its call is at most2

( )
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Note that for  �xed the query-cost is polynomial in  and . It remains to
be seen whether this bound can be improved. However, this is somewhat of a theoretical
question as under -realizability, even if the coe�cients  that realize  are
known, in the lack of extra information, one needs to perform  simulation calls to be
able to get good approximations to the action-value function , which seems necessary
for inducing a good policy. Hence, the query cost must scale at least linearly with ,
hence, no algorithm is expected to be even query-e�cient when the number of actions is
large.

The planner that is referred to in the previous theorem is called TensorPlan. The reason
for this name will become clear after we describe the algorithm.

TensorPlan belongs to the class of optimistic algorithms. Since knowing , the
parameter vector that realizes , would be su�cient for acting near-optimally, the
algorithm aims to �nd a good approximation to this vector.

A suitable estimate is constructed in a two-step process:

Here,  is the initial state of the episode, i.e., this is the state the planner is called when 
. Recalling that , we see that provided that ,

where, for convenience, we introduce . When  is close enough to ,
one hopes that the policy induced by  will be near-optimal. Hence, the approach is to

poly ((
dH

δ
)

A

,B)

A > 0 d,H, 1/δ B

v∗ θ ∈ R
d v∗

Θ(A)
q∗

A

TensorPlan: An optimistic planner

θ∗

v∗

The algorithm maintains a non-empty “hypothesis” set , which contains
those parameter vectors that are consistent with the data that the algorithm has seen.
The details of the construction of this set are at the heart of the algorithm and will
come soon.

1 Θ ⊂ R
d

Given , an estimate  is produced by solving a maximization problem:2 Θ θ+

θ+ = arg max
θ∈Θ

ϕ0(s0)⊤θ . (2)

s0

h = 0 ϕ0(s0)⊤θ∗ = v∗
0(s0) θ∗ ∈ Θ

v0(s0; θ+) ≥ v∗
0(s0) ,

vh(s; θ) = ϕh(s)⊤θ θ+ θ∗

θ+
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“roll out” with the induced policy (using the simulator) and verify whether during the
rollout the data received is consistent with the Bellman equation, and as a result of this,
also whether the episode return observed is close to . When a contradiction to
any of these is detected, the data can be used to shrink the set  of consistent parameter
vectors.

The approach described leaves open the question of what we mean by a policy “induced”
by . The naive approach is to base this on the Bellman optimality equation, which states
that

holds for  with . If ,  will also satisfy this
equation and thus one might de�ne the policy induced by  that achieves the maximum
above when  is replaced by . Consistency of  would also mean checking
whether  holds (approximately) when  is replaced in this equation by ,
which, one may imagine can be checked by generating data from the simulator.

While this may approach work, it is not easy to see whether it does. (It is open problem
whether this works!) TensorPlan de�nes induced policies and consistency slightly
di�erently. The changed de�nition allows not only for proving that TensorPlan is query-
e�cient, but it even makes the guarantees for TensorPlan stronger than what was
announced above in the theorem.

What makes the analysis of the algorithm that is based on the Bellmean optimality
equation di�cult is the presence of the maximum in this equation. Hence, TensorPlan
removes this maximum. Accordingly, the policy induced by  is de�ned as any policy 
which in state  and stage  chooses any action  which ensures that

If there is no such action,  is free to choose any action. We say that local consistency
holds at  when there exists an action  such that  holds.

If there are multiple actions that satisfy , any of them will do: Choosing the
maximizing action is not enforced. However, when  is realizable and , any
action that satis�es  will be a maximizing action and the policy induced will be
optimal.

The advantage of the relaxed notion of induced policy is that with this choice, TensorPlan
will also be able to compete with any deterministic policy whose value-function is

v0(s0; θ+)
Θ

θ+

v∗
h(s) = max

a
ra(s) + ⟨Pa(s), v∗

h+1⟩ (3)

h = 0, 1, … ,H − 1 v∗
H = 0 θ+ = θ∗ vh(⋅; θ+)

θ+

v∗
h+1 vh+1(⋅; θ+) θ+

(3) v∗
⋅ (⋅) v⋅(⋅; θ+)

θ+ πθ+

s h a ∈ A

vh(s; θ+) = ra(s) + ⟨Pa(s), vh+1(⋅; θ+)⟩ . (4)

πθ

(s,h, θ+) a ∈ A (4)

(4)
v∗ θ+ = θ∗

(4)
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realizable. This expands the scope of TensorPlan: Perhaps the optimal value function is
not realizable with the features handed to TensorPlan, but if there is any deterministic
policy whose value-function is realizable with them, then TensorPlan will be guaranteed
to produce almost as much as reward as that policy. In fact, it will produce nearly as much
reward as the policy that achieves the best value.

To summarize, after generating a hypothesis , TensorPlan will run a number of rollouts
using the simulator so that for each state  encountered TensorPlan �rst �nds an action 
satisfying . If this succeeds, the rollout continues by TensorPlan getting a next state
from the simulator at  and  is incremented. This continues up to , which
ends a rollout. TensorPlan will run  rollouts of this type and if all of them succeeds,
TensorPlan stops and will use the parameter vector  in the rest of the episode and the
same policy  as used during the rollouts. If during the rollouts an inconsistency is
detected, TensorPlan will decrease the hypothesis set  and continue with a next
experiment.

It remains to be seen why TensorPlan (1) stops with a bounded number of queries and (2)
why it is sound.

We start with boundedness. This is where the change of how policies are induced by
parameters is used in a critical manner. Introduce the discriminants:

Note that  is just the di�erence between the right-hand and the left-hand
side of , where we plugged in the de�nition  and  and we de�ne

thus  is the “expected next feature vector” given . Then, by de�nition,
local consistency holds for  if and only if there exists some action  such that

. Exploiting that the product of numbers is zero if and only if some of
them is zero, we see that local consistency is equivalent to

TensorPlan
θ+

s a

(4)
(s, a,h) h h = H

m

θ+

πθ+

Θ

Boundedness

Δ(s, a,h, θ) = ra(s) = ⟨Pa(s)ϕh+1, θ⟩ − ϕh(s)⊤θ .

Δ(s, a,h, θ)
(4) vh vh+1

Pa(s)ϕh+1 =∑
s′∈S

Pa(s, s′)ϕh+1(s′) ;

Pa(s)ϕh+1 (s, a)
(s,h, θ) a ∈ A

Δ(s, a,h, θ) = 0

∏
a∈A

Δ(s, a,h, θ) = 0 . (5)
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The reason this purely algebraic reformulation of local consistency is helpful is because
the product of the discriminants can be see as a linear function of the -fold tensor
product of .

To see why this holds, it will be useful to introduce some extra notation: For a real  and a
�nite-dimensional vector , we will denote by  the vector  (i.e., adding  to the
�rst position and shifting down all other entries in ). With this notation, we can write
the discriminants as an inner product:

Now, recall that the tensor product  of vectors satis�es the following property:

where the inner product between two tensors is de�ned in the usual way, by overlaying
them and then taking the sum of the products of the entries that are on the top of each
other.

Based on this identity, we see that , and thus local consistency, is equivalent to

Note that while  is a nonlinear function of , the above equation is linear
in .

Imagine for a moment that the data  above can be obtained with no errors and
assume that  is realizable. Let . We can think of both  and 
taking values in  (this corresponds to “�attening” these tensors).

TensorPlan can be seen as an algorithm that generates a sequence 
such that  is the th hypothesis that TensorPlan chooses,  is the th data
of the form  with some  where TensorPlan detects an inconsistency. When
inconsistency is detected, the hypothesis set is shrunk:

and  is chosen in  by . Together with  (the  ball of radius  in 
), we have that for ,

A

(1, θ⊤)⊤

r

u ru–(r,u⊤)⊤ r

u

Δ(s, a,h, θ) = ⟨ra(s) (Pa(s)ϕh+1 − ϕh(s)), 1 θ⟩
––

⊗

∏
a

⟨xa, ya⟩ = ⟨⊗axa, ⊗aya⟩ ,

(5)

⟨⊗ara(s) (Pa(s)ϕh+1 − ϕh(s))

D(s,h)

, ⊗a1 θ

F(θ)

⟩ = 0 .
–


–



F(θ) ∈ R
(d+1)A θ

F(θ)

D(s,h)
v∗ k = (d + 1)A D(s,h) F(θ)

R
k

(θ1,x1), (θ2,x2), …
θi ∈ R

d i xi ∈ R
k i

D(s,h) (s,h)

Θi+1 = Θi ∩ {θ : F(θ)⊤xi = 0},

θi+1 Θi+1 (2) Θ1 = Bd
2(B) ℓ2 B

R
d i > 1
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Let . By its construction, for any ,  and hence  is orthogonal to 
. Also by its construction,  is not orthogonal to . Because of this, 

cannot lie in the span of  (if it did, it would be orthogonal to ). Hence, the
vectors  are linearly independent. As there are at most  linearly independent
vectors in , Tensorplan will generate at most  of these data vectors (in fact, for
TensorPlan, this is , can you explain why?). This means that after at most 
“contradictions” to local consistency, TensorPlan will cease to detect more
inconsistencies and thus it will stop.

It remains to be seen that TensorPlan is sound. Let  be the parameter vector that
TensorPlan generated when it stops. This means that during the  rollouts, TensorPlan
did not detect any inconsistencies.

Take a trajectory  generated during the th rollout of 

rollouts. Since there is no inconsistency along it, for any  we have

Hence, with probability ,

where the �rst inequality is by Hoe�ding’s inequality and uses that rewards are bounded
in , the equality after it uses , the second inequality is again by Hoe�ding’s
inequality and uses that

Θi = {θ ∈ Bd
2(B) : F(θ)⊤x1 = 0, … ,F(θ)⊤xi−1 = 0}.

fi = F(θi) i ≥ 1 θi ∈ Θi fi
x1, … ,xi−1 xi fi xi

x1, … ,xi−1 fi
x1,x2, … k

R
k k

k − 1 k

Soundness
θ+

m

S
(i)
0 ,A(i)

0 , … ,S (i)
H−1,A(i)

H−1,S (i)
H i m

0 ≤ t ≤ H − 1

r
A

(i)
t

(S
(i)
t ) = vt(S

(i)
t ; θ+) − ⟨P

A
(i)
t

(S
(i)
t ), vt+1(⋅; θ+)⟩ . (6)

1 − ζ

v
πθ+

0 (s0) ≥
1

m

m

∑
i=1

t−1

∑
t=0

r
A

(i)
t

(S
(i)
t ) − H√

log(1/ζ)

2m

=
1

m

m

∑
i=1

t−1

∑
t=0

vt(S
(i)
t ; θ+) − ⟨P

A
(i)
t

(S
(i)
t ), vt+1(⋅; θ+)⟩ − H√

log(2/ζ)

2m

≥
1

m

m

∑
i=1

t−1

∑
t=0

vt(S
(i)
t ; θ+) − vt+1(S

(i)
t+1; θ+) − (H + 2B)√

log(2/ζ)

2m

= v0(s0; θ+) − (H + 2B)√
log(2/ζ)

2m
,

[0, 1] (6)

⟨P
A

(i)
t

(S (i)
t ), vt+1(⋅; θ+)⟩ = E[vt+1(S (i)

t+1; θ+)|S (i)
t ,A(i)

t ]
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and that  is bounded between  (note that we could truncate  to  to
replace  above by ), while the last equality uses that  by

de�nition and that  by de�nition. Setting  high enough (

) we can guarantee

We now argue that this implies soundness.

Letting  be the set of -bounded parameter vectors  such that for some
deterministic policy , . By the de�nition of  and , for any , 
(no correct hypothesis is ever eliminated). It also follows that at any stage of the process,

Hence, when TensorPlan stops with parameter , with high probability,

In particular, if  is -realizable, . Thus, after stopping, for the
rest of the episode, TensorPlan can safely use the policy induced by .

So far we have seen that if somehow TensorPlan would be able to get  with no
errors, (1) it would stop after re�ning its hypothesis set at most  times and (2) when it
stops, with high probability it would return with a parameter vector that induces a policy
with high value. Regarding the number of queries used, if obtaining  is
counted as a single query, TensorPlan would need at most 
queries (  rollouts, for each of the  states in the rollout,  queries are needed).

It remains to be seen how to adjust this argument to the case when  need to
be estimated based on interactions with a stochastic simulator.

It is not known whether TensorPlan can be computationally e�ciently implemented. I
suspect it cannot. This is because  is speci�ed with a number of highly nonlinear
constraints (in the parameter vector).

vt [−B,B] vt [0,H]
H + 2B 2H vH(⋅; θ+) = 0

S
(i)
0 = s0 m

m =
~
O((H + B)2/δ2)

v
πθ+

0 (s0) ≥ v0(s0; θ+) − δ.

Θ∘ ⊂ Bd
2(B) B θ

π vπ = Φθ D F i ≥ 1 Θ∘ ⊂ Θi

v0(s0; θ+) ≥ max
θ∈Θ∘

v
πθ

0 (s0).

θ+

v
πθ+

0 (s0) ≥ v0(s0; θ+) − δ ≥ max
θ∈Θ∘

v
πθ

0 (s0) − δ .

v∗ B v
πθ+

0 (s0) ≥ v∗
0(s0) − δ

θ+

Summary
Δ(s, a,h, θ)

k

Δ(s, a,h, θ)
maHk = maH(d + 1)A

m H A

Δ(s, a,h, θ)

Notes

•
Θi
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The essence of the construction here is lifting the problem into a higher-dimensional
linear space. This is a standard technique in machine learning but in a very di�erent
context when data is mapped to a higher dimensional space to strengthen the power of
linear predictors. The once popular RKHS methods take this to the extreme. Note that
here, in contrast to this classic lifting procedure, the parameter vector is mapped
through a nonlinear function to a higher dimensional space and the purpose is to
simply have a clear grasp on why learning stops.

We call  here the discriminant function because what is important about it is that it
discriminates between “good” and “bad” cases and it does it by using the special value
of zero. Readers familiar with the RL literature will note, however, that  is nothing
but, what is known as the “temporal di�erence error” (under some �xed action).

It is curious that the algorithm builds up a data-bank of critical data that it uses to
restrain the set of parameter vectors and that it is quite selective in adding new data
here. That is, TensorPlan may generate a lot more data then goes on the list .
If we wanted to be philosophical and would not mind antropomorphising algorithms,
we could say that TensorPlan remembers what it is “surprised by”. This is very much
unlike other algorithms, like LSVI- , which may generate a lot of redundant data. The
other di�erence is that TensorPlan uses the data to generate a hypothesis set. The
choice of the parameter vector from this set is dictated by the optimization (reward
maximization) problem solved by TensorPlan.

There are quite a few examples of optimistic algorithms in planning; there is a
considerable literature of using optimisim in tree search. However, classics, such as
the  algorithm can also be seen as an optimistic algorithm (at least when used with
an “admissible heuristic”, which is just a way of saying that  uses an optimistic
estimate of the values). The  algorithm is another example. However, the real
“homeland” of optimistic algorithms in online learning, a topic that will be covered
later in the course.

This lecture is entirely based on the paper

Weisz, Gellert, Philip Amortila, Barnabás Janzer, Yasin Abbasi-Yadkori, Nan Jiang, and
Csaba Szepesvári. 2021. “On Query-E�cient Planning in MDPs under Linear
Realizability of the Optimal State-Value Function.”

available on arXiv.

•

• Δ

Δ

•

x1,x2, …

G

•

A∗

A∗

LAO∗

Bibliographical notes

•
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RL Theory

Planning in MDPs / 13. From API to Politex

In the lecture on approximate policy iteration, we proved that for any MDP feature-map pair 
 and any  excess suboptimality target, with a total runtime of

least-squares policy iteration with -optimal design (LSPI-G) can produce a policy  such that
the suboptimality gap  of  satis�es

where  is the worst-case error with which the -dimensional features can approximate the
action-value functions of memoryless policies of the MDP . In fact, the result continues to hold
if we restrict the memoryless policies to those that are -measurable in the sense that the
probability assigned by such a policy to taking some action  in some state  depends only on 

. Denote the set of such policies by . Then, for an MDP  and associated feature-map ,
let

Checking the proof, noticing that LSPI produces -measurable policies only, it follows that
provided the �rst policy it uses is also -measurable,  in  can be replaced by .

Earlier, we also proved that the ampli�cation of  by the -factor is unavoidable by any
e�cient planner. However, this leaves open the question of whether the ampli�cation by a
polynomial power of  is necessary, and whether in particular, the quadratic
dependence is necessary? Our �rst result, which is given without proof, shows that in the case of
LSPI this ampli�cation is real and the quadratic dependence cannot be improved.

Theorem (LSPI error ampli�cation lower bound): The quadratic dependence in  is tight:
There exists a constant  such that for every  and every  there exists a
featurized MDP , a policy  of the MDP, a distribution  over the states such that LSPI

13. From API to Politex

(M,ϕ) ε′ > 0

poly(d,
1

1 − γ
,A,

1
ε′
) ,

G π

δ π

δ ≤
2(1 + √d)

(1 − γ)2
ε + ε′ , (1)

ε d

M

ϕ

a s

ϕ(s, ⋅) Πϕ M ϕ

~ε(M,ϕ) = sup
π∈Πϕ

inf
θ

∥Φθ − qπ∥∞ .

ϕ

ϕ ε (1) ~ε(M,ϕ)

ε √d

1/(1 − γ)

(1)
c > 0 0 ≤ γ < 1 ε > 0

(M,ϕ) π μ
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when it is allowed in�nitely many rollouts of in�nite length produces a sequence of policies 
 such that

The result of the theorem holds even when LSPI is used with state-aggregation. Intuitively,
state-aggregation means that states are groups into a number of groups and states belonging to
the same group are treated identically when it comes to representing value functions. This,
value-functions based on state-aggregation are constant over any group. When we are concerned
with state-value functions, aggregating the states based on a partitioning of the states  into the
groups  (i.e.,  and all the subsets are disjoint from each other), a feature-map
that allows to represent these piecewise constant functions is

where  is the indicator function that takes the value of one when its argument (a logical
expression) is true, and is zero otherwise. In other words, . Any feature
map of this form de�nes a partitioning of the state-space and thus corresponds to the state-
aggregation. Note that the piecewise constant functions can also be represented if we rotate all
the features by the same rotation. The only important aspect here is that the features of di�erent
states are either identical, or orthogonal to each other, making the rows of the feature matrix an
orthonormal system.

For approximating action-value functions, state-aggregation uses the same partitioning of
states regardless of the identity of the actions: In e�ect, for each action, one uses the feature map
from above, but with a private parameter vector. This e�ectively amounts to stacking  -

times, to get one copy of it for each action . Note that for state-aggregation, there is no 
ampli�cation of the approximation errors: State-aggregation is extrapolation friendly, as will be
explained at the end of the lecture.

Returning to the result, an inspection of the actual proof reveals that in this case LSPI leads to a
sequence of policies that alternate between the initial policy and . “Convergence” is fast, yet,
the guarantee is far from satisfactory. In particular, in the same example, an alternate algorithm,
which we will cover next can reduce the quadratic dependence on the horizon to a linear
dependence.

Politex comes from Policy Iteration with Expert Advice. Assume that one is given a featurized
MDP  with state-action feature-map  and access to a simulator, and a -optimal design 

π0 = π,π1, …

inf
k≥1

μ(v∗ − vπk) ≥
c~ε(M,ϕ)

(1 − γ)2
.

S

{Si}1≤i≤d Si ⊂ S

ϕi(s) = I(s ∈ Si) , i ∈ [d] ,

I

ϕ : S → {e1, … , ed}

ϕ(s) A

a ∈ A √d

π1

Politex

(M,ϕ) ϕ G
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 for .

Politex generates a sequence of policies  such that for ,

where

with

where for ,  is the parameter vector obtained by running the least-squares policy
evaluation algorithm based on G-optimal design (LSPE-G) to evaluate policy  (see this
lecture). In particular, recall that this algorithm rolls out policy  from the points of a G-optimal
design to produce  independent trajectories of length  each, calculates the average return for
each of these design points and then solves the (weighted) least-squares regression problem
where the features are used to regress on the obtained values.

Above,  truncates its argument to the  interval:

Note that to calculate , one does need to calculate 

and then compute .

Unlike in policy iteration, the policy returned by Politex after  iterations is either the “mixture
policy”

or the policy which gives the best value with respect to the start state, or start distribution. For
simplicity, let us just consider the case when  is used as the output. The meaning of a mixture
policy is simply that one of the  policies is selected uniformly at random and then the selected
policy is followed for the rest of time. Homework 3 gives precise de�nitions and asks you to prove
that the value function of  is just the mean of the value functions of the constituent policies:

We now argue that the dependence on the approximation error of the suboptimality gap of 
only scales with , unlike the case of approximate policy iteration.

C ⊂ S × A ϕ

π0,π1, … k ≥ 1

πk(a|s) ∝ exp (ηq̄k−1(s, a)) ,

q̄k = q̂0 + ⋯ + q̂j,

q̂j = ΠΦθ̂j,

j ≥ 0 θ̂j
πj

πj

m H

Π : RS×S → R
S×S [0, 1/(1 − γ)]

(Πq)(s, a) = max(min(q(s, a), 1/(1 − γ)), 0), (s, a) ∈ S × A .

πk(a|s) Ek(s, a) = exp(ηΠ[ϕ(s, a)⊤θ̄k−1])

πk(a|s) = Ek(s, a)/∑a′ Ek(s, a′)

k

π̄k =
1
k

(π0 + ⋯ + πk−1) ,

π̄k

k

π̄k

vπ̄k =
1
n

(vπ0 + ⋯ + vπk−1) . (2)

π̄k

1/(1 − γ)
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For this, recall that by the value di�erence identity

Summing up, dividing by , and using  gives

Now, . Also, . Let . Elementary
algebra then gives

We see that the approximation errors  appear only in term . In particular, taking
pointwise absolute values, using the triangle inequality, we get that

which shows the promised dependence. It remains to show that  above is also under
control. However, this is left to the next lecture.

The  in our results comes from controlling the extrapolation errors of linear prediction. In the

case of state-aggregretion, however, this extra  error ampli�cation is completely avoided:
Clearly, if we measure a function with a precision  and there is at least one measurement per
part, then by using the value measured at each part (at an arbitrary state there) over the whole
part, the worst-case error is bounded by . Weighted least-squares in this context just takes the
weighted average of the responses over each part and uses this as the prediction, so it also avoids
amplifying approximation errors.

In this case, our analysis of extrapolation errors is clearly conservative. The extrapolation error
was controlled in two steps: In our �rst lemma, for  weighted least-squares we reduced this
problem to that of controlling  where  is the moment matrix for .

vπ
∗

− vπj = (I − γPπ∗)−1 [Tπ∗vπj − vπj ] .

k (2)

vπ
∗

− vπ̄k =
1
k

(I − γPπ∗)−1
k−1

∑
j=0

Tπ∗vπj − vπj .

Tπ∗vπj = Mπ∗(r + γPvπj) = Mπ∗qπj vπj = Mπj
qπj q̂j = ΠΦθ̂j

vπ
∗

− vπ̄k =
1
k

(I − γPπ∗)−1
k−1

∑
j=0

Mπ∗qπj − Mπj
qπj

=
1
k

(I − γPπ∗)−1
k−1

∑
j=0

Mπ∗ q̂j − Mπj
q̂j

T1

+
1
k

(I − γPπ∗)−1
k−1

∑
j=0

(Mπ∗ − Mπj
)(qπj − q̂j)

T2

.

 

εj = qπj − q̂j T2

∥T2∥∞ ≤
2

1 − γ
max

0≤j≤k−1
∥εj∥∞ ,

∥T1∥∞

Notes

State aggregation and extrapolation friendliness
√d

√d

ε

ε

ρ

g(ρ) = maxz∈Z ∥ϕ(z)∥G−1
ρ

Gρ ρ
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In fact, the proof of this lemma is the culprit: By carefully inspecting the proof, we can see that
the application of Jensen’s inequality introduces an unnecessary term: For the case of state
aggregation (orthonormed feature matrix),

as long as the design  is such that it chooses any group exactly once. Thus, the case of state-
aggregation shows that some feature-maps are more extrapolation friendly than others. Also,

note that the Kiefer-Wolfowitz theorem, of course, still gives that  is the smallest value that
we can get for  when optimizing for .

It is a fascinating question of how extrapolation errors behave for various feature-maps.

In homework 2, Question 3 was concerned with least-squares value iteration. The algorithm
concerned (call it LSVI-G) uses a random approximation of the Bellman operator, based on a G-
optimal design (and action-value functions). The problem was to show a result similar to what
holds for LSPI-G holds for LSVI-G, as well. That is, for any MDP feature-map pair  and
any  excess suboptimality target, with a total runtime of

least-squares policy iteration with -optimal design (LSPI-G) can produce a policy  such that
the suboptimality gap  of  satis�es

Thus, the dependence on the horizon of the approximation error is similar to the one that was
obtained for LSPI. Note that the de�nition of  is di�erent from what we have used in
analyzing LSPI:

Above,  is the Bellman optimality oerator for action-value functions and  is de�ned so that for
,  is also a  function which is obtained from  by truncating for

each input  the value  to : 
. In , “BOO” stands for “Bellman-

optimality operator” in reference to the appearance of  in the de�nition.

∑
z′∈C

ϱ(z′)|ϕ(z′)⊤G−1
ϱ ϕ(z′)| = 1

ρ

√d

g ρ

Least-squares value iteration (LSVI)

(M,ϕ)
ε′ > 0

poly(d,
1

1 − γ
,A,

1
ε′
) ,

G π

δ π

δ ≤
4(1 + √d)

(1 − γ)2
εBOO + ε′ . (3)

εBOO

εBOO := sup
θ

inf
θ′

∥Φθ′ − TΠΦθ∥∞ .

T Π
f : S × A → R Πf S × A → R f

(s, a) f(s, a) [0, 1/(1 − γ)]
(Π(f))(s, a) = max(min(f(s, a), 1/(1 − γ)), 0) εBOO

T
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In general, the error measures  used in LSPI and  are incomparable. The latter quantity
measures a “one-step error”, while  is concerned with approximating functions de�ned over an
in�nite-horizon.

Call an MDP linear if both the reward function and the next state distributions for each state lie
in the span of the features:  with some  and , as an  matrix takes the
form  with some . Clearly, this is a notion that captures how well the
“dynamics” (including the reward) of the MDP can be “compressed”.

When an MDP is linear, . We also have in this case that . More generally, de�ning 
 and , it is not hard to see that 

 and , which shows that both policy iteration
(and its soft versions) and value iteration are “valid” approaches, though, by ignoring the fact
that we are comparing upper bounds, this also shows that value iteration may have an edge over
policy iteration when the MDP itself is compressible. This should not be too surprising given that
value-iteration is “more direct” in aiming to calculate . Yet, they may exist cases when the
action-value functions are compressible, while the dynamics is not.

Let . A stationary point of  with respect to some set of memoryless policies  is any 
 such that

It is known that if  are state-aggregation features then any stationary point  of  satis�es

where  is de�nes as the worst-case error of approximation action-value functions of -
measurable policies with the features (the same constant as used in the analysis of approximate
policy iteration).

Politex can be seen as a “soft” version of policy iteration with averaging. The softness is
controlled by : When , Politex uses a greedy policy w.r.t. to an average of all previous -
functions. Notice that in this case if Politex were to use a greedy policy w.r.t. the last -function,
then it would reduce exactly to LSPI-G. As we have seen, in LSPI-G the approximation error can
get quadratically ampli�ed with the horizon . Thus, one way to avoid this quadratic
ampli�cation is to stay soft with averaging. As we shall see in the next lecture, the price of this is

ε εBOO

ε

Linear MDPs

r = Φθr θr ∈ R
d P SA × S

P = ΦW W ∈ R
d×S

εBOO = 0 ε = 0
ζr = infθ ∥Φθr − r∥∞ ζP = infW ∥ΦW − P∥∞

εBOO ≤ ζr + γζP/(1 − γ) ε ≤ ζr + γζP/(1 − γ)

q∗

Stationary points of a policy search objective
J(π) = μvπ J Π

π ∈ Π

⟨∇J(π),π′ − π⟩ ≤ 0 .

ϕ π J

μvπ ≥ μv∗ −
4εapx

1 − γ
,

εapx ϕ

Soft-policy iteration with Averaging

η η → ∞ Q

Q

1/(1 − γ)
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a relatively slower convergence to a target suboptimality excess value. Nevertheless, the promise
is that the algorithm will still stay polynomial in all the relevant quantities.

Politex was introduced in the paper

POLITEX: Regret Bounds for Policy Iteration using Expert Prediction. Abbasi-Yadkori, Y.;
Bartlett, P.; Bhatia, K.; Lazic, N.; Szepesvári, C.; and Weisz, G. In ICML, pages 3692–3702, May
2019. pdf

However, as this paper also notes, the basic idea goes back to the MDP-E algorithm by Even-Dar
et al:

Even-Dar, E., Kakade, S. M., and Mansour, Y. Online Markov decision processes. Mathematics
of Operations Research, 34(3):726–736, 2009.

This algorithm considered a tabular MDP with nonstationary rewards – a completely di�erent
setting. Nevertheless, this paper introduces the basic argument presented above. The Politex
paper notices that the argument can be extended to the case of function approximation. In
particular, it also notes the nature of the function approximator is irrelevant as long as the
approximation and estimation errors can be tightly controlled.

The Politex paper presented an analysis for online RL and average reward MDPs. Both add
signi�cant complications. The argument shown here is therefore a simpler version. Connecting
Politex to LSPE-G in the discounted setting is trivial, but has not been presented before in the
literature.

The �rst paper to use the error decomposition shown here together with function approximation
is

Abbasi-Yadkori, Y., Lazic, N., and Szepesvári, C. Modelfree linear quadratic control via
reduction to expert prediction. In AISTATS, 2019.
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RL Theory

Planning in MDPs / 14. Politex

The following lemma can be extracted from the calculations found at the 
end of the last lecture:

Lemma (Mixture policy suboptimality): Fix an MDP . For any sequence  of
policies, any sequence  of functions, and any policy , the mixture
policy  satis�es

In particular, the only restriction is on policy  so far and that is that it has to be a memoryless
policy. To control the suboptimality of the mixture policy, one just needs to control the action-
value approximation errors  and the term  and for this we are free to choose the
policies  in any way we want them to be chosen. To help with this choice, let us
now inspect  for a �xed state :

where, abusing notation, we use  for . Now, recall that  will be computed based
on  while  is unknown. One must thus wonder whether it is possible to control this term?

As it happens, the problem of controlling terms of this type is the central problem studied in a
sub�eld of learning theory, online learning. In particular, in online linear optimization, the
following problem is studied:

An adversary and a learner are playing a zero-sum minimax game in  discrete rounds, taking
actions in an alternating manner. In round  ( ), �rst, the learner needs to choose

14. Politex

M π0, … ,πk−1

q̂0, … , q̂k−1 : S × A → R π∗

π̄k = 1/k(π0 + ⋯ + πk−1)

vπ
∗

− vπ̄k ≤
1
k

(I − γPπ∗)−1
k−1

∑
j=0

Mπ∗ q̂j − Mπj
q̂j

T1

+
2 max0≤j≤k−1 ∥qπj − q̂j∥∞

1 − γ
.



(1)

π∗

∥qπj − q̂j∥∞ T1

π0, … ,πk−1

T1(s) s

T1(s) =
k−1

∑
j=0

⟨π∗(s, ⋅), q̂j(s, ⋅)⟩ − ⟨πj(s, ⋅), q̂j(s, ⋅)⟩ , (2)

π(s, a) π(a|s) q̂j
πj π∗

Online linear optimization

k

j 0 ≤ j ≤ k − 1
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a vector . Then, the adversary chooses a vector, . Before its choice,
the adversary learns about all previous choices of the learner, and the learner also learns about
all previous choices of the adversary. They also remember their own choices. For simplicity, let
us constraint the adversary and the learner to be deterministic. The payo� to the adversary at
the end of the  rounds is

In particular, the adversary’s goal is maximize this, while the learner’s goal is to minimize this
(the game is zero-sum). Both the adversary and the learner are given  and the sets .
Letting  to denote the learner’s strategy (a sequence of maps of histories to ) and  to
denote the adversary’s strategy (a sequence of maps of histories to ), the above quantity
depends on  and : .

Taking the perspective of the learner, the quantity de�ned in  is called the learner’s regret.
Denote the minimax value of the game by : .

Thus, this only depends on ,  and . The dependence is suppressed when it is clear from the
context. The central question then is how  depends on  and also on  and . In online
linear optimization both sets  and  are convex.

Connecting these games to our problem, we can see that  in  matches the regret
de�nition in  if we let ,  be the 
simplex of  and . Furthermore,  needs to be chosen �rst, which
is followed by the choice of . While  will not be chosen in an adversarial fashion, a
bound  on the regret against arbitrary choices will also serve as a bound for the speci�c choice
we will need to make for .

Mirror descent (MD) is an algorithm that originates in optimization theory. In the context of
online linear optimization, MD is a strategy for the learner which is known to guarantee near
minimax regret for the learner under a wide range of circumstances.

To align with the large body of literature on online linear optimization, it will be bene�cial to
switch signs. Thus, in what follows we assume that the learner will aim at minimizing  by
its choice  and the adversary will aim at maximizing the same expression over its choice 

. This means that we also rede�ne the regret to

xj ∈ X ⊂ R
d yj ∈ Y ⊂ R

d

k

Rk = max
x∈X

k−1

∑
j=0

⟨x, yj⟩ − ⟨xj, yj⟩ . (3)

k X , Y

L X A

Y

L A Rk = RK(A,L)

(3)
R∗

k R∗
k = infL supARk(A,L)

k X Y

R∗
k k X Y

X Y

T1(s) (2)
(3) d = A X = M1(A) = {p ∈ [0, 1]A : ∑a pa = 1} A − 1

R
A Y = [0, 1/(1 − γ)]A πj(s, ⋅)

q̂j(s, ⋅) q̂j(s, ⋅)
B

q̂j(s, ⋅)

Mirror descent

⟨x, y⟩
x ∈ X

y ∈ Y



5/16/22, 11:22 PM 14. Politex - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec14/ 3/10

Everything else remains the same: The game is zero-sum, minimax, the regret is the payo� for
the adversary and the negative regret is the payo� of the learner. This version is called a loss-
game. The reason to prefer the loss game is because most of optimization theory is written for
minimizing convex functions rather than for maximizing concave functions. However, clearly,
this is an arbitrary choice. The second form of the regret shows that the player’s goal is to
compete with the best single decision from  but chosen given the hindsight of knowing all the

choices of the adversary. That is, the learner’s goal is to keep its cumulative loss 

close to, or even below the best cumulative loss in hindsight, . (With this, 

 matches  when we change .)

MD is recursively de�ned and in its simplest form it has two design parameters. The �rst is an

extended real-valued convex function , called the “regularizer”, while the second
is a stepsize, or learning rate parameter . (The extended reals is just  together with 

 and an appropriate extension of basic arithmetic. By allowing convex functions to
take the value  allows to merge “constraints” with objectives in a seamless fashion. The
value  is added because sometimes we have to work with negated extended real-valued
convex functions.)

The speci�cation of MD is as follows: In round ,  is picked to minimize :

In what follows, we assume that all the minimizers that we need in the de�nition of MD do
exist. In the speci�c case that we need,  is the  simplex, which is a closed convex set, and
since convex functions are also continuous, the minimizers that we will need are guaranteed to
exist.

Then, in round , MD chooses  as follows:

Here,

Rk = max
x∈X

k−1

∑
j=0

⟨xj, yj⟩ − ⟨x, yj⟩

=
k−1

∑
j=0

⟨xj, yj⟩ − min
x∈X

k−1

∑
j=0

⟨x, yj⟩ . (4)

X

∑k−1
j=0 ⟨xj, yj⟩

minx∈X ∑
k−1
j=0 ⟨x, yj⟩

T1(s) Rk Y = [−1/(1 − γ), 0]A

F : R
d → R̄

η > 0 R

+∞, −∞
+∞

−∞

0 x0 ∈ X F

x0 = arg min
x∈X

F(x) .

X d − 1

j > 0 xj

xj = arg min
x∈X

η⟨x, yj−1⟩ + DF (x,xj−1) (5)

DF (x,x′) = F(x) − (F(x′) + ⟨∇F(x′),x − x′⟩)
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is the remainder term in the �rst-order Taylor-series expansion
of the value of  at  when the expansion is carried out at  and,
for simplicity, we assume that  is di�erentiable on the interior
of its domain . Since for any
convex function and any linear approximation of it stays below
the graph of the convex function, we immediately get that  is
nonnegative valued. For an illustration see the �gure on the
right, which shows a convex function, the �rst-order Taylor approximation of the function at
some point.

One should think of  is a “nonlinear distance inducing function”; above  can be
thought of penalty imposed on deviating from . However,  is more often than not is not a
distance, i.e., often it is not even symmetric. Because of this, we can’t really call  a distance.
Hence, it is called a divergence. In particular,  is called the Bregman divergence of 
from .

In the de�nition of the MD update rule, we tacitly assumed that  is well-de�ned.
This requires that  should be di�erentiable at , which one needs to check when applying
MD. In our speci�c case, this will hold, again.

The idea of the MD update rule is to (1) allow the learner to react to the last loss  vector
chosen by the adversary, while also (2) limiting how much  can depart from , thus,
e�ectively stabilizing the algorithm, the tradeo� governed by the choice of . (Separating 
from  only makes sense because there are some standard choices for , but  is really just a
scale parameter for ). In particular, the larger the value of  is, the less “data-sensitive” MD
will be (here,  constitute the data), and vice versa, the smaller  is, the more data-
sensitive MD will be.

Under some technical conditions on , the update rule  has a two step-implementation:

The �rst equation above explains the name: To obtain , one �rst transforms  using 
 to the “mirror” (dual) space where “gradients”/”slopes live”, where

one then adds to the result , which can be seen as a “gradient step” (interpreting  as
the gradient of some loss). Finally, the result is then mapped back to the original (primal) space
using the inverse of .

The second step of the update takes the resulting point  and “projects” it to  in a way that
respects the “geometry induced by ” on the space .

F x x′

F

dom(F) = {x ∈ R : F(x) < +∞}

DF

F DF (x,x′)
x′ DF

DF

DF (x,x′) x

x′

DF (x,xj−1)
F xj−1

yj−1

xj xj−1

η > 0 η

F F η

F η

y0, … , yk−1 η

Where is the mirror?
F (5)

~xj = (∇F)−1(∇F(xj−1) − ηyj−1) ,
xj = arg min

x∈X
DF (x, ~xj) .

(6)
(7)

~xj xj−1

∇F : dom(∇F) → R
d

−ηyj−1 yj−1

∇F

~xj X

F R
d
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The use of complex terminology, like “primal” and “dual” spaces, which happen to be the same
old Euclidean space, , probably sounds like an overkill. Indeed, in the simple case we
consider when these spaces are identical it is. The distinction would become important when
working with in�nite dimensional spaces, which we leave to others for now.

Besides helping with understanding the terminology, the two-step update shown can also be
useful for computation. In fact, this will be the case in the special case that we need.

We have seen that in the special case we need,

To use MD we need to specify the regularizer  and the learning
rate. For the former, we choose

which is known as the unnormalized negentropy function. Note
that  takes on �nite values when  (since 

, we set  whenever ). Outside of this quadrant, we
de�ne the value of  to be . The plot of  for  is shown on the right.

It is not hard to verify that  is convex: First,  is convex. Taking the �rst
derivative, we �nd that for any ,

where  is applied componentwise. Taking the derivative again, we �nd that for ,

i.e., the matrix whose th diagonal entry is . Clearly, this is a positive de�nite matrix,
which su�ces to verify that  is a convex function.

The Bregman divergence induced by  is

R
d

Mirror descent on the simplex

X = Pd−1 := {p ∈ [0, 1]d : ∑
a

pa = 1} ,

Y = [−1/(1 − γ), 0]d , and
d = A .

F

F(x) =∑
i

xi log(xi) − xi ,

F x ∈ [0, ∞]d

limx→0+ x log(x) = 0 xi log(xi) = 0 xi = 0
F +∞ x log(x) − x x ≥ 0

F dom(F) = [0, ∞]d

x ∈ (0, ∞)d

∇F(x) = log(x) ,

log x ∈ (0, ∞)d

∇2F(x) = diag(1/x) ,

(i, i) 1/xi

F

F

DF (x,x′) = ⟨1,x log(x) − x − x′ log(x′) + x′⟩ − ⟨log(x′),x − x′⟩

= ⟨1,x log(x/x′) − x + x′⟩ ,
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where again we use an “intuitive” notation when operations are �rst applied componentwise
(i.e.,  denotes a vector whose th component is ). Note that the domain of 
is . If both  and  lie in the -simplex,  becomes the well-known
relative entropy, or Kullback-Leibler (KL) divergence.

It is not hard to verify that  can be obtained as shown in -  and in particular this two-
step update takes the form

Unrolling the recursion, we can also that this is the same as

Based on this, it is obvious that MD can be e�ciently implemented with this choice of . As far
as the regret is concerned, the following theorem holds:

Theorem (MD with negentropy on the simplex): Let  amd . Then, no
matter the adversary, a learner using MD with

is guaranteed that its regret  in  rounds is at most

When the adversary plays in  with , we can use MD on the transformed
sequence . Then, for any ,

x log(x) i xi log(xi) DF

[0, ∞)d × (0, ∞)d x x′ d − 1 DF

xj (6) (7)

~xj,i = xj−1,i exp(−ηyj−1,i) , xj,i =
~xj,i

∑i′
~xj,i′

, i ∈ [d] .

~xj,i = exp(−η(y0,i + ⋯ + yj−1,i)) , xj,i =
~xj,i

∑i′
~xj,i′

, i ∈ [d] . (8)

F

X = Pd−1 Y = [0, 1]d

η = √ 2 log(d)
k

Rk k

Rk ≤√2k log(d) .

Y = [a, b]d a < b
~yj = (yj − b1)/(b − a) ∈ [0, 1]d x ∈ X
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where the third equality used that . Taking the maximum over  gives
that

By the update rule in ,

Note that the “shift” by  cancels out in the normalization step. Hence, MD in this case takes
the form

which is the same as before, except that the learning rate is scaled by . In particular,
in this case one can set

and use update rule .

As agreed,  from  takes the form of a -round regret against  in online linear
optimization on the simplex with losses in . This suggest to use MD in a state-
by-state manner to control . Using  and  gives

Rk(x) :=
k−1

∑
j=0

⟨xj − x, yj⟩

=
k−1

∑
j=0

⟨xj − x, (b − a)~yj + b1⟩

= (b − a)
k−1

∑
j=0

⟨xj − x, ~yj⟩

≤ (b − a)√2k log(d) ,

⟨xj, 1⟩ = ⟨x, 1⟩ = 1 x ∈ X

Rk ≤ (b − a)√2k log(d) . (9)

(8)

~xj,i = exp(−η(~y0,i + ⋯ + ~yj−1,i)) = exp(−η/(b − a)(y0,i + ⋯ + yj−1,i − jb)) , i ∈ [d] .

−jb

~xj,i = exp(−η/(b − a)(y0,i + ⋯ + yj−1,i)) , xj,i =
~xj,i

∑i′
~xj,i′

, i ∈ [d] , (10)

1/(b − a)

η =
1

b − a
√ 2 log(d)

k
. (11)

(8)

MD applied to MDP planning
T1(s) (2) k π∗(s, ⋅)

[−1/(1 − γ), 0]A

T1(s) (8) (11)

Ej(s, a) = exp(η(q̂0(s, a) + ⋯ + q̂j−1(s, a))) , πj(a|s) =
Ej(s, a)

∑a′ Ej(s, a′)
, a ∈ A
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to be used with

Note that this is the update used by Politex. Then,  gives that simultaneously for all ,

Putting things together, we get the following result:

Theorem (Politex suboptimality gap bound): Pick a featurized MDP  with a full rank
feature-map  and let . Assume that B2  holds for  and the
rewards in  are in the  interval. For , de�ne

Then, in  iterations, Politex produces a mixed policy  such that with probability , the
suboptimality gap  of  satis�es

In particular, for any , choosing  so that

policy  is -optimal with

while the total computation cost is .

η = (1 − γ)√
2 log(A)

k
.

(9) s ∈ S

|T1(s)| ≤
1

1 − γ
√2k log(A) . (12)

(M,ϕ)
φ : S × A → R

d K,m,H ≥ 1 ε (M,ϕ)
M [0, 1] 0 ≤ ζ < 1

κ(ζ) = ε(1 + √d) + √d(
γH

1 − γ
+

1
1 − γ

√ log(d(d + 1)K/ζ)

2m
) ,

K π̄K 1 − ζ

δ π̄K

δ ≤
1

(1 − γ)2
√ 2 log(A)

K
+

2κ(ζ)

1 − γ
.

ε′ > 0 K,H,m

K ≥
32 log(A)

(1 − γ)4(ε′)2
,

H ≥ Hγ,(1−γ)ε′/(8√d) and

m ≥
32d

(1 − γ)4(ε′)2
log((d + 1)2K/ζ) ,

πK δ

δ ≤
2(1 + √d)

1 − γ
ε + ε′ ,

poly( 1
1−γ

, d, A, 1
(ε′)2 , log(1/ζ))
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Note that as compared to the result of LSPI with G-optimal design, the ampli�cation of the
approximation error  is reduced by a factor of , as it was promised. The price is that
now the number of iterations , is a polynomial of , whereas before it was logarithmic.

This suggest that perhaps a higher learning rate can help initially to speed up convergence to
get the best of both words.

Proof: As in the proof of the suboptimality gap for LSPI, we get that for any , with
probability at least , for any ,

where the �rst inequality uses that  takes values in . On the event when the above
inequalities hold, by  and ,

The details of this calculation are left to the reader. 

Online linear optimization is a special case of online convex/concave optimization, where the
learner chooses elements of some nonempty convex set  and the adversary needs to
choose an element of a nonempty set  of concave functions over : 

. Then, the de�nition of regret is changed to

where as before  is the choice of the learner for round  and  is the choice of the
adversary for the same round. Identifying any vector  of  with the linear map ,
we see that online linear optimization is a special case of this problem.

Of course, by negating all functions in  (i.e., letting ) and rede�ning the
regret to

ε 1/(1 − γ)
K 1

(1−γ)ε′

0 ≤ ζ ≤ 1
1 − ζ 0 ≤ k ≤ K − 1

∥qπk − q̂k∥∞ = ∥qπk − ΠΦθ̂k∥∞ ≤ ∥qπk − Φθ̂k∥∞ ≤ κ(ζ) ,

qπk
[0, 1]

(1) (12)

δ ≤
1

(1 − γ)2
√ 2 log(A)

K
+

2κ(ζ)

1 − γ
.

■

Notes

Online convex optimization, online learning

X ⊂ R
d

Y X

Y ⊂ {f : X → R : f is concave}

Rk = max
x∈X

k−1

∑
j=0

yj(x) − yj(xj) , (13)

xj ∈ X j yj ∈ Y

u R
d x ↦ ⟨x,u⟩

Y
~
Y = {−y : y ∈ Y}

Rk = max
x∈X

k−1

∑
j=0

~yj(xj) − ~yj(x) (14)
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we get a de�nition that is used in the literature, which prefers the convex case to the concave.

Here, the interpretation is that  is a “loss function” chosen by the adversary in round .

The standard function notation (  is applied to ) injects unwarranted asymmetry in the
notation. After all, from the perspective of the learner, they need to choose a value in  that
works for the various functions in . Thus, we can consider any element of  as a function that
maps elements of  to reals through . Whether  has functions in them or  has
functions in them does not matter that much; it is the interconnection between  and  that
matters more. For this reason, one can study online learning when  above is replaced by 

, where  is a speci�c map that assigns payo�s to every pair of points in 
and . When the map is �xed, one can spare an extra symbol by just using  in place of 

, which makes things almost a full circle given that we started with the linear case when 
.

We introduced truncation to simplify the analysis. The proof can be made to go through even
without it, with a mild increase of the suboptimality gap (or runtime). The advantage of

removing the projection is that without projection, ,
which leads to a practically signi�cant reduction of the runtime.

Copyright © 2020 RL Theory.

~yj ∈
~
Y j

yj x

X

Y X

Y y ↦ y(x) Y X

X Y

y(x)
b(x, y) b : X × Y → R X

Y [x, y]
b(x, y)
[x, y] = ⟨x, y⟩

Truncation or no truncation?

q̂0 + ⋯ + q̂j−1 = Φ(θ̂0 + ⋯ + θ̂j−1)
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RL Theory

Planning in MDPs / 15. From policy search to policy gradients

In the previous lectures we attempted to reduce the complexity of planning by assuming
that value functions over the large state-action spaces can be compactly represented with
a few parameters. While value-functions are an indispensable component of poly-time
MDP planners (see Lectures 3 and 4), it is far from clear whether they should also be given
priority when working with larger MDPs.

Indeed, perhaps it is more natural to consider sets of policies with a compact description.
Formally, in this problem setting the planner will be given a black-box simulation access
to a (say, -discounted) MDP  as before, but the interface also provides
access to a parameterized family of policies over , , where for any
�xed parameter ,  is a memoryless stochastic policy: .

For example,  could be such that for some feature-map ,

In this case “access” to  means access to , which can be either global (i.e., the planner
is given the “whole” of  and can run any preprocessing on it), or local (i.e.,  is
returned by the simulator for the “next states”  and for all actions ). Of course, the
exponential function can be replaced with other functions, or, one can just use a neural
network to output “scores”, which are turned into probabilities in some way. Dispensing
with stochastic policies, a narrower class is the class of policies that are greedy with
respect to action-value functions that belong to some parametric class.

One special case that is worthy of attention due to its simplicity is the case when  is
partitioned into  (disjoint) subsets  and for , we have  basis
functions de�ned as follows:

15. From policy search to policy
gradients

γ M = (S,A,P , r)

(S,A) π = (πθ)θ∈Rd

θ ∈ R
d πθ πθ : S → M1(A)

πθ ϕ : S ×A → Rd

πθ(a|s) =
exp(θ⊤φ(s, a))

∑a′ exp(θ⊤φ(s, a′))
, (s, a) ∈ S ×A . (1)

πθ φ

φ φ(s′, a)
s′ ∈ S a

S

m S1, … ,Sm i ∈ [m] A

ϕi,a′(s, a) = I(s ∈ Si, a = a′) , s ∈ S, a, a′ ∈ A, i ∈ [m] . (2)
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Here, to minimize clutter, we allow the basis functions to be indexed by pairs and
identi�ed  with , as usual. Then, the policies are given by , the
collection of  probability vectors :

Note that because of the special choice of ,  for the unique index 
such that . This is known as state-aggregretion: States belonging to the same
group give rise to the same probability distribution over the actions. We say that the
featuremap  is of the state-aggregation type if it takes the form  with
an appropriate reindexing of the basis functions.

Fix now a state-aggregation type featuremap. We can consider both the direct
parameterization of policies given in , or the “Boltzmann” parameterization given in 

. As it is easy to see the set of possible policies that can be expressed with the two
parameterizations are nearly identical. Letting  be the set of policies that can be
expressed using  and the direct parameterization and letting  be the set of
policies that can be expressed using  but with the Boltzmann parameterization, �rst
note that , and if we take the closure, 

 of  then we can notice that

In particular, the Boltzmann policies cannot express point-mass distributions with �nite
parameters, but letting the parameter vectors grow without bound, any policy that can be
expressed with the direct parameterization can also be expressed by the Boltzmann
parameterization. There are many other possible parameterizations, as also mentioned
earlier. The important point to notice is that while the parameterization is necessary so
that the algorithms can work with a compressed representation, di�erent representations
may describe an identical set of policies.

A reasonable goal then is to ask for a planner that competes with the best policy within
the parameterized family, or the -best policy policy for some positive . Since there may
not be a parameter  such that  for any , we simplify the problem
by requiring that the policy computed is nearly best when started from some initial
distribution .

A 1, … , A θ = (θ1, … , θm)
m θ1, … , θm ∈ M1(A)

πθ(a|s) =
m

∑
i=1

∑
a′

ϕi,a′θi,a′ . (3)

ϕ πθ(a|s) = θi,a i ∈ [m]

s ∈ Si

φ : S ×A → R
d (2)

(3)
(1)

Πdirect

φ ΠBoltzmann

φ

Πdirect, ΠBoltzmann ⊂ M1(A)S ⊂ ([0, 1]A)S

clo(ΠBoltzmann) ΠBoltzmann

clo(ΠBoltzmann) = Πdirect .

Policy search

ε ε

θ vπθ ≥ vπθ′ − ε1 θ′ ∈ R
d

μ ∈ M1(S)
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De�ning  as

the policy search problem is to �nd a parameter  such that

The approximation version of the problem asks for �nding  such that

The formal problem de�nition then is as follows: a planning algorithm is given the MDP 
 and a policy parameterization  and we are asking for an algorithm that returns

the solution to the policy search problem in time polynomial in the number of actions 
and the number of parameters  that describes the policy. An even simpler problem is
when the MDP has �nitely many states, and the algorithm needs to run in polynomial
time in ,  and . In this case, it is clearly advantageous for the algorithm if it is given
the exact description of the MDP (as described in Lecture 3) Sadly, even this mild version
of policy search is intractable.

Theorem (Policy search hardness): Unless , there is no polynomial time
algorithm for the �nite policy search problem even when the policy space is restricted to
the constant policies and the MDPs are restricted to be deterministic with binary rewards.

The constant policies are those that assign the same probability distribution to each state.
This is a special case of state aggregation when all the states are aggregated into a single
class. As the policy does not depend on the state, the problem is also known as the blind
policy search problem. Note that the result holds regardless of the representation used to
express the set of constant policies.

Proof: Let . The dynamics is deterministic: The next state is  if action 
 is taken in state . A policy is simple a probability distribution  over

the action space, which we shall view as a column vector taking values in . The

J : ML → R

J(π) = μvπ(= ∑
s∈S

μ(s)vπ(s)),

θ ∈ R
d

J(πθ) = max
θ′

J(πθ′) .

θ′ ∈ R
d

J(πθ) = max
θ′

J(πθ′) − ε .

M (πθ)θ
A

d

S A d

P = NP

S = A = [n] a

a ∈ A n π ∈ M1([n])
[0, 1]n
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transition matrix of  is , or, in matrix form, . Clearly, 
 (i.e.,  is idempotent). Thus,  for any  and hence

De�ning  so that , we have . Plugging this in into the
previous displayed equation and using that , we get

Thus we see that the policy search problem is equivalent to maximizing the quadratic
expression in the previous display over the probability simplex. Since there is no
restriction on , one may at this point conjecture that this will be hard to do. That this is
indeed the case can be shown by a reduction to the maximum independent set problem,
which asks for checking whether the independence number of a graph is above a
threshold and which is known to be NP-hard even for -regular graphs (i.e., graphs
where every vertex has exactly three neighbours).

Here, the independence number of a graph is de�ned as follows: We are given a simple
graph  (i.e., there are no self-loops, no double edges, and the graph is
undirected). An independent set in  is a neighbour-free subset of vertices. The
independence number of  is de�ned as

Quadratic optimization has close ties to the maximum independent set problem:

Lemma (Motzkin-Strauss ‘65): Let  be the vertex-vertex adjacency matrix
of simple graph (i.e.,  if and only if  is an edge of the graph). Then, for 

 the  identity matrix,

π Pπ(s, s′) = π(s′) Pπ = 1π⊤

P 2
π = 1π⊤

1π⊤ = Pπ Pπ P t
π = 1π⊤ t > 0

J(π) = μ(rπ +∑
t≥1

γ tP t
πrπ) = μ(I +

γ

1 − γ
1π⊤)rπ .

Rs,a = ra(s) R ∈ [0, 1]n×n rπ = Rπ

μ1 = 1

J(π) = μRπ +
γ

1 − γ
π⊤Rπ .

R

3

G = (V ,E)
G

G

α(G) = max{|V ′| : V ′ ⊂  independent in G} .

G ∈ {0, 1}n

Gij = 1 (i, j)
I ∈ {0, 1}n×n n × n

1

α(G)
= min

y∈M1([n])
y⊤(G + I)y .
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We now show that if there is an algorithm that solves policy search in polynomial time
then it can also be used to solve the maximum independent set problem for simple, -
regular graphs. For this pick a -regular graph  with  vertices. De�ne the MDP as above
with  states and actions and the rewards chosen to that  where  is
the vertex-vertex adjacency matrix of the graph and  is the all-ones matrix: .
We add  so that the rewards are in the  interval and in fact are binary as required.
Choose  as the uniform distribution over the states. Note that 
because the graph is -regular. Then, for ,

Hence,  holds

if and only if . Thus, the decision problem of deciding that  is at least
as hard as the maximum independent set problem. As noted, this is an NP-hard problem,
hence the result follows. 

Based on the theorem just proved it is not very likely that we can �nd computationally
e�cient planners to compete with the best policy in a restricted policy class, even if the
class looks quite benign. This motivates aiming at some more modest goal, one possibility
of which is to aim for computing stationary points of the map . Let 

 be the set of policies that can represented; we view these
now as “large vectors”. Then, in this approach we aim to identify  (and its
parameters) so that for any  and small enough  so that ,

. For  small, 
. Plugging this in into the previous

inequality, reordering and dividing by  gives

Here,  denotes the derivative of . What remains to be seen is whether (1) relaxing
the goal to computing  helps with the computation (and when) and (2) whether we can

3
3 G n

n R = E − (I + G) G

E E = 11
⊤

E [0, 1]

μ 1
⊤(I + G) = 41⊤

3 π ∈ M1(A)

J(π) =
1

1 − γ
− μ(E + I + G)π −

γ

1 − γ
π⊤(E + I + G)π

=
1

1 − γ
−

1

n
1

⊤(I + G)π −
γ

1 − γ
π⊤(I + G)π

=
1

1 − γ
−

4

n
−

γ

1 − γ
π⊤(I + G)π .

max
π∈M1([n]

J(π) =
1

1 − γ
−

4

n
−

γ

1 − γ

1

α(G)
≥

1

1 − γ
−

4

n
−

γ

1 − γ

1

m

α(G) ≥ m J(π) ≥ a

■

Potential remedy: Local search

J : π ↦ μvπ

Π = πθ : θ ∈ R
d ∈ [0, 1]S×A

π∗ ∈ Π

π′ ∈ Π δ > 0 π∗ + δ(π′ − π∗) ∈ Π
J(π∗ + δ(π′ − π∗)) ≤ J(π∗) δ

J(π∗ + δ(π′ − π∗)) ≈ J(π∗) + δ⟨J ′(π∗),π′ − π∗⟩

δ > 0

⟨J ′(π∗),π′ − π∗⟩ ≤ 0 , π′ ∈ Π . (4)

J ′(π) J

π∗
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get some guarantees for how well  satisfying  will do compared to 
, that is obtaining some approximation guarantees. For the latter we

seek for some function  of the MDP  and  (or , when  is based on some
featuremap) so that

As to the computational approaches, we will consider a simple approach based on
(approximately) following the gradient of .

The reader may be wondering about what is the appropriate “access model” when  is
not restricted to the form given in . There are many possibilities. One is to develop
planners for speci�c parametric forms. A more general approach is to let the planner

access  and  for any  it has encountered and any value of  it
chooses. This is akin to the �rst-order black-box oracle model familiar from
optimization theory.

The hardness result for policy search is taken from a paper of Vlassis, Littman and Barber,
who actually were interested in the computational complexity of planning in partially
observable Markov Decision Problems (POMDPs). It is in fact an important observation
that with function approximation, planning in MDPs becomes a special case planning in
POMDPs: In particular, if policies are restricted to depend on the states through a feature-
map  (any two states with identical features will get the same action
distribution assigned to them), then planning to achieve high reward with this restricted
class is almost the same as planning to achieve high reward in a partially observable MDP
where the observation function is . Planners for the former problem could still have
some advantage though if they can also access the states: In particular, an online planner
which is given a feature-map to help its search but is also given access to the states is in
fact not restricted to return actions whose distribution follows a policy from the feature-
restricted class of policies. In machine learning, in the analogue problem of competing
with a best predictor within a class but using predictors that do not respect the
restrictions put on the competitors are called improper and it is known that improper
learning is often more powerful than proper learning. However, when it comes to learning
online or in a batch fashion then feature-restricted learning and learning in POMDPs

π∗ (4)

J ∗ = maxπ∈Π J(π)
ε M Π ϕ Π

J(π∗) ≥ J ∗ − ε(M, Π)

θ ↦ J(πθ

Notes

Access models
πθ

(1)

πθ(⋅|s) ∂
∂θ πθ(⋅|s) s θ ∈ R

d

From function approximation to POMDPs

ϕ : S → R
d

ϕ
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become exact analogs. Finally, we note in passing that Vlassis et al. (2012) also add an
argument that show that it is not likely that policy search is in NP.

Provided that from an approximate solution to the Motzkin-Straus problem one can
e�ciently extract an approximate solution to the maximum independent set problem, it
follows that the approximate version of policy search is also NP-hard. In particular, it is
not hard to see with the same construction that if one has an e�cient method �nd a
policy with  then this gives an e�cient method to �nd an
independent set of size  for the said -regular graphs where

where the last inequality follows if ,  and 

holds. Now, it is known that, unless P=NP, there is no polynomial time approximation
algorithm for the maximal independent set problem with approximation factor 

 or better. Hence, we get that, unless P=NP, there is no polynomial time
approximation algorithm for the policy search problem for any �xed 
provided the planning horizon is scaled with  so that . (This is somewhat
unsatisfactory given that the range of the optimal values is : It would be more
natural to scale  with , i.e., consider relative errors as in complexity theory.)
Also, it remains an open problem to get a hardness result for a “constant”  (independent
of ).

The above is still dependent on whether an approximate solution to the maximum
independent set problem can be extracted from an approximate solution to the Motzkin-
Straus optimization problem.

A common reason to consider policy search is because working with a restricted
parametric family of policies holds the promise of decoupling the computational cost of
learning and planning from the cardinality of the action-space. Indeed, with action-value
functions, one usually needs an e�cient way of computing greedy actions (with respect to
some �xed action-value function). Computing  in the lack of extra
structure of the action-space and the function  takes linear time in the size of ,
which is highly problematic unless  has a small cardinality. In many applications of

Open problem: Hardness of approximate policy search

J(π) ≥ maxπ Jπ − ε

cα(G) 3

c =
1

1 + 1−γ

γ
εα(G)

≥
1

1 + 1−γ

γ
εn

≥ 94/95 ,

ε ≤ 0.5 γ ≥ 0.5 H := 1
1−γ

≥ n
95/94−1

= 94n

c = 94/95

0 ≤ ϵ ≤ 0.5

n H = constn
1/(1 − γ)

ϵ 1/(1 − γ)
γ

n

Dealing with large action spaces

arg maxa∈A q(s, a)
q(s, ⋅) A

A
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practical interest this is not the case: The action space can be “combinatorially sized”, or
even a subset of some (potentially multidimensional) continuous space.

If sampling from  can be done e�ciently, one may then potentially avoid the
above expensive calculation. Thus, policy search is often proposed as a remedy to extend
algorithms to work with large action spaces. Of course, this only applies if the sampling
problem can indeed be e�ciently implemented, which adds an extra restriction on the
policy representation. Nevertheless, there are a number of options to achieve this: One
can use for example an implicit representation (perhaps in conjunction with a direct one
that uses probabilities/densities) for the policy.

For example, the policy may be “represented” as a map  so that
sampling from  is accomplished by drawing a sample  from a �xed
distribution over the set  and then returning . Clearly, this is e�cient as
long as  can be e�ciently evaluated at any of its inputs and the random value  can be
e�ciently produced. If  is su�ciently �exible, one can in fact choose a very simple
distribution for , such as the standard normal distribution, or the uniform distribution.

Note that when  is continuous and the policies are deterministic is a special case: The
key is still to be able to e�ciently produce a sample from , just in this case this
means a deterministic computation.

The catch is that one may also still need the derivatives of  with respect to the
parameter  and with an implicit representation as described above, it is unclear whether
these derivatives can be e�ciently obtained. As it turns out, this can be arranged if 
is made of composition of elementary (invertible, di�erentiable) transformations with
this property (by the chain rule). This observation is the basis of various approaches to
“neural” density estimation (e.g., Tabak and Vanden-Eijnden, 2010, Rezende, Mohamed,
2015, or Jaini et al. 2019).

Vlassis, Nikos, Michael L. Littman, and David Barber. 2012. “On the Computational
Complexity of Stochastic Controller Optimization in POMDPs.” ACM Trans. Comput.
Theory, 12, 4 (4): 1–8.

Esteban G. Tabak. Eric Vanden-Eijnden. “Density estimation by dual ascent of the log-
likelihood.” Commun. Math. Sci. 8 (1) 217 - 233, March 2010.

πθ(⋅|s)

fθ : S ×R → A

πθ(⋅|s) R ∼ P

R f(s,R) ∈ A
fθ R

fθ
P

A

πθ(⋅|s)

πθ(⋅|s)
θ

fθ(⋅|s)
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RL Theory

Planning in MDPs / 16. Policy gradients

In this last lecture on planning, we look at policy search through the lens of applying
gradient ascent. We start by proving the so-called policy gradient theorem which is then
shown to give rise to an e�cient way of constructing noisy, but unbiased gradient
estimates in the presence of a simulator. We discuss at a high level the ideas underlying
gradient ascent and stochastic gradient ascent methods (as opposed to more common
case in machine learning where the goal is to minimize a loss, or objective function, we
are maximizing rewards, hence ascending on the objective rather than descending). We
then �nd out about the limitations of policy gradient even in the presence of “perfect
representation” (unrestricted policy classes, tabular case) and perfect gradient
information, which motivates the introduction of a variant known as “natural policy
gradients” (NPG). We then uncover a close relationship between this method and Politex.
The lecture concludes with comparing results for NPG and Politex.

Fix an MDP  and a discount factor . Continuing from the last
lecture for  let  be a stochastic policy: . Further, �x a distribution 

 over the states and for a policy  let

denote the expected value of using policy  in  from an initial state randomly chosen
from . The policy gradient theorem gives su�cient conditions under which the map 

 is di�erentiable at some parameter  and gives a “simple” expression for
the gradient as a function of . Just to demistify this, for �nite (or discrete) action
spaces, for a memoryless policy  and function ,  is a function mapping
states to reals de�ned via

Hence, the derivative,  is actually quite simple. It is a function mapping states to 
dimensional vectors which satis�es

16. Policy gradients

The policy gradient theorem
M = (S,A,P , r) 0 ≤ γ < 1

θ ∈ R
d πθ πθ : S → M1(A)

μ ∈ M1(S) π : S → M1(A)

J(π) = μvπ

π M

μ

θ ↦ J(πθ) θ = θ0

d
dx
Mπx

qπθ0

π q : R
S×A → R Mπq

(Mπq)(s) = ∑
a

π(a|s)q(s, a) .

d
dx
Mπx

q d

d d
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The theorem we give though is not limited to this case and also applies to when the action
space is in�nite and even when the policy is deterministic. For the theorem statement,
recall that for a policy  we used  to denote its discounted state occupancy measure.
Also, for a function , we use  to denote its derivative.

Theorem (Policy Gradient Theorem): Fix an MDP . For , de�ne the maps 
 and . Fix . Assume that at least one of the following

two conditions is met:

Then,  is di�erentiable at  and

where the last equality holds if  is �nite.

For the second expression, we treat  as an  matrix. Note that this �ts well
with our convention of treating functions as “column vectors” (hence  is a vector
of dimension ) and with the standard convention that a “vector derivative” creates “row
vectors”.

Above, the second expression where we moved the derivative with respect to the
parameter inside the expression will only be valid in in�nite state spaces when some
additional regularity assumption is met. One such assumption is that 

 is -integrable.

In words, the theorem shows that the derivative of the performance of a policy can be
obtained by integrating a simple derivative that involves the action-value function of the
policy.

Of the two conditions of the theorem, the �rst condition is the one that is generally easier
to verify. In particular, the condition on the continuous di�erentiability of  at 

d

dx
(Mπx

q)(s) = ∑
a

d

dx
πx(a|s)q(s, a) .

π ~νπ
μ

f f ′

(S,A,P , r) x ∈ Rd

fπ : x ↦ ~νπ
μMπx

qπ gπ : x ↦ ~νπx
μ vπ θ0 ∈ R

d

 exists and is continuous in a neighborhood of  and  exists;1 θ ↦ f ′
πθ

(θ0) θ0 g′
πθ0

(θ0)

 exists and is continuous in a neighborhood of  and  exists;2 θ ↦ g′
πθ

(θ0) θ0 f ′
πθ0

(θ0)

x ↦ J(πx) x = θ0

d

dx
J(πx)|x=θ0 =

d

dx
~ν
πθ0
μ Mπx

qπθ0 |x=θ0 = ~ν
πθ0
μ

d

dx
Mπx

qπθ0 |x=θ0 , (1)

S

d
dx
Mπx

qπθ0 S × d

Mπx
)qπθ0

S

s ↦ ∥ d
dx (Mπx

qπθ0 )(s)|x=θ0∥
~ν
πθ0
μ

x ↦ fπx
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 is usually easy to verify. To show the di�erentiability of  at  just recall
that if the partial derivatives of a function exist and are continuous the function is
di�erentiable. Then recall that  and hence its di�erentiability with
respect to (say)  follows if  is continuously di�erentiable at . In e�ect,
for �nite state-action spaces, di�erentiability at  follows (and the conditions of the
theorem are satis�ed) as long as for any  state-action pair, the maps  have
continuous partial derivatives at .

Proof: The proof is based on a short calculation that starts with writing the value
di�erence identity for , multiplied from the right by , taking derivatives and
then letting .

The details are as follows: Recall from Calculus 101 the following result: Assume that 
 satis�es at least one of the two conditions:

Then  is di�erentiable at  and

Let  be two memoryless policies. By the value di�erence identity,

where the last equality just used that that . Now let 
and  and multiply the value di�erence identity from the left by  to get

Now, focusing on the �rst term on the right-hand-side, let

Provided that  is su�ciently regular in a neighborhood of  (to be discussed later), 
gives that

x = θ0 x ↦ gπx
x = θ0

~νπx
μ v = ∑∞

t=0 γ
tνP t

πx
v

x1 x ↦ νMπx
Pv x = θ0

θ0

(s, a) x ↦ πx(a|s)

x = θ0

vπx − vπθ0 μ

x = θ0

f = f(u, v)

 exists and is continuous in a neighborhood of  and 
exists;

1 z ↦ ∂
∂v f(z,x) z = x ∂

∂u f(u,x)|u=x

 exists and is continuous in a neighborhood of  and  exists.2 z ↦ ∂
∂u f(x, z) z = x ∂

∂v f(x, v)|v=x

z ↦ f(z, z) z = x

d

dx
f(x,x) =

∂

∂u
f(x,x) +

∂

∂v
f(x,x) . (2)

π′,π

vπ
′

− vπ = (I − γPπ′)−1[Tπ′vπ − vπ]

= (I − γPπ′)−1[Mπ′qπ − vπ] ,

Tπ′vπ = Mπ′(r + γPvπ) = Mπ′qπ π′ = πx

π = πθ0
μ

μ(vπx − vπθ0 ) = ~νπx
μ [Mπx

qπθ0 − vπθ0 ] . (3)

f(u, v) = ~νπu
μ Mπv

qπθ0 . (4)

f (x,x) (2)

d

dx
f(x,x) =

d

du
~νπu
μ Mπx

qπθ0 |u=x +
d

dv
~νπx
μ Mπv

qπθ0 |v=x
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Taking the derivative of both sides of  with respect to  and using the above display we
get

Now let . Then, . Hence, the �rst and the third term of the
above display cancel each other and we get

Finally, the conditions to apply  to our  in  are met by our assumption on  and ,
�nishing the proof. 

When the action-space is discrete and  are stochastic policies, we can further
manipulate the expression we obtained. In particular, in this case

and thus, for �nite ,

While this can be used as the basis of evaluating (or approximating) gradient, it may be
worthwhile to point out an alternate form which is available when . In this case,
using the chain rule we get

Using this in  we get

which has the pleasant property that it takes the form of an expected value over the
actions of the score function of the policy map correlated with the action-value function.

Before moving on it is worth pointing out that an equivalent expression is obtained if 
 above is shifted by an arbitrary constant which may depend on  or  but not .

Indeed, since , di�erentiating both sides with respect to  gives 
. Hence, we also have

(3) x

d

dx
J(x) =

d

dx
μ(vπx − vπθ0 ) =

d

du
~νπu
μ Mπx

qπθ0 |u=x +
d

dv
~νπx
μ Mπv

qπθ0 |v=x +
d

dx
~νπx
μ vπθ0 .

x = θ0 Mπx
qπθ0 = Mπθ0

qπθ0 = vπθ0

d

dx
J(πx)|x=θ0 =

d

dv
~ν
πθ0
μ Mπv

qπθ0 |v=θ0 .

(2) f (4) fπ gπ

■

πθ

(Mπx
qπθ0 )(s) = ∑

a

πx(a|s)qπθ0 (s, a)

A

d

dx
(Mπx

qπθ0 )(s) = ∑
a

d

dx
πx(a|s)qπθ0 (s, a) . (5)

πx(a|s) > 0

d

dx
logπx(a|s) =

d
dx
πx(a|s)

πx(a|s)
.

(5)

d

dx
(Mπx

qπθ0 )(s) = ∑
a

πx(a|s)(
d

dx
logπx(a|s))qπθ0 (s, a) , (6)

qπθ0 (s, a) θ0 s a

∑a πx(a|s)b(s, θ0) = b(s, θ0) x

∑a
d
dx πx(a|a)b(s, θ0) = 0
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This may have signi�cance when using simulation to evaluate derivatives: One may
attempt to use an appropriate “bias” term to reduce the variance of the estimate of the
gradient. Before discussing simulation any further, it may be also worthwhile to discuss
what happens when the action-space is in�nite.

For countable in�nite action spaces, the only di�erence is that  may not always hold.
An easy su�cient condition for this to hold is that  is summable,
or equivalently,  is -summable/integrable.

For uncountably in�nite action spaces, this argument works with the minimal necessary
changes. In the most general case,  is a probability measure over  and its derivative
is a vector-valued measure. The formulae derived above (e.g., ) remain valid if we
replace the sum with an integral when  is given in the form of a density with respect
to some �xed measure  over :

In fact, this is a strictly more general form:  is a special case of  when  is set to the
counting measure over .

In the special case when  (a Dirac at ), in words, when we have a
deterministic policy map and  is di�erentiable with respect to , it is better to start from
the formula given in the theorem.

Indeed, in this case,

and hence

and thus, if either  is �nite or an appropriate regularity condition holds,

If  is di�erentiable and  is also di�erentiable at  for every  then

d

dx
(Mπx

qπθ0 )(s) = ∑
a

πx(a|s)(
d

dx
logπx(a|s))(qπθ0 (s, a) − b(s, θ0)) . (7)

(5)

∑a ∥ d
dx
πx(a|s)∥ |qπθ0 (s, a)|

∥ d
dx logπx(a|s)∥ |qπθ0 (s, a)| πx(⋅|s)

πθ(⋅|s) A

(7)

πθ(⋅|s)

λ A

d

dx
(Mπx

qπθ0 )(s) = ∫
A

πx(a|s)(
d

dx
logπx(a|s))(qπθ0 (s, a) − b(s, θ0))λ(da) . (8)

(7) (8) λ

A

πθ(⋅|s) = δfθ(s)(⋅) fθ(s)

f θ

(Mπx
qπθ0 )(s) = qπθ0 (s, fθ(s))

d

dx
(Mπx

qπθ0 )(s) =
d

dx
qπθ0 (s, fx(s))

S

d

dx
J(πx)|x=θ0

= ~ν
πθ0
μ

d

dx
qπθ0 (⋅, fx(⋅))|x=θ0

.

a ↦ qπθ0 (s, a) x ↦ fx(s) x = θ0 s

d

dx
J(πx)|x=θ0 = ~ν

πθ0
μ

∂

∂a
qπθ0 (⋅, fθ0(⋅))

d

dx
fx(⋅)|x=θ0 ,
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which is known as the “deterministic policy gradient formula”.

The idea of gradient methods is to make small steps in the parameter space in the
direction of the gradient of an objective function that is to be maximized. In the context of
policy search, this works as follows: If  denotes the parameter vector in round ,

where for  di�erentiable,  is the “gradient” (transpose of derivative).
Above,  is a positive tuning parameter, called the “stepsize” of the update. The idea is
that the “gradient” points in the direction where the function is expected to grow. Indeed,
since by de�nition,

if ,

or

For any  su�ciently small so that the  term (in absolute value) is below , we
see that the right-hand side is positive, hence so is the left-hand side, as claimed. This
simple observation is the basis of a huge number of algorithmic variants. In the lack of
extra structure the best we can hope from a gradient method is that it will end up in the
vicinity of a stationary point. In the presence of extra structure (.e.g, concave function to
be maximized), convergence to a global maximum can be guaranteed.

In all cases the key to the success of gradient methods is the appropriate choice of the
stepsizes; these choices are based on a re�nement of the above simple argument that
shows that moving towards the direction of the gradient helps. There are also ways of
“speeding up” convergence; these “acceleration methods” use a re�ned iteration (two
iterates updated simultaneously) and can greatly speed up convergence. As there are
many excellent texts that describe various aspects of gradient methods which cover these
ideas, we will not delve into them any further, but I will rather give some pointers to this
literature in the endnotes.

Gradient methods

xi ∈ R
d i

xi+1 = xi + αi∇xJ(πx)|x=xi
,

f ∇xf = ( d
dx
f)⊤

αi

f(x′) = f(x) + f ′(x)(x′ − x) + o(∥x′ − x∥)

x′ = x + δ(f ′(x))⊤

f(x + δ(f ′(x))⊤) = f(x) + δ∥f ′(x)∥2
2 + o(|δ|) ,

f(x + δ(f ′(x))⊤) − f(x)

δ
= ∥f ′(x)∥2

2 + o(1) ,

δ o(1) ∥f ′(x)∥2
2
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The elephant in the room here is that the gradient of  is not readily available. The next
best thing then is to attempt to build an estimate  of . In the planning setting, the
question is whether one can get reasonable estimates of this gradient using a simulator.

Generally speaking there are two types of errors when construction an estimate of the
gradient: The one that is purely random, and the one that is not. De�ning , 

 measures the “bias” of the gradient estimate, while  is the
noise. Gradient methods with decreasing (or small) stepsizes naturally “average out” the
noise. The version of gradient methods that are able to do this are called stochastic
gradient methods. Naturally, these methods are slower when the noise is larger and in
general cannot converge faster than how fast the noise averages out. In particular, in
persistent noise (i.e., noise with nonvanishing variance), the best rate available for
stochastic gradient methods is . While this can be slower than what can be
achieved without noise, if the iteration cost is polynomial in the relevant quantities, the
total cost of achieving an  stationary point can be bounded by a polynomial in these
quantities and .

When the gradient estimates are biased, the bias will in general put a limit on how close a
gradient method can get to a stationary point. While generally a zero bias is preferred to a
nonzero bias, a nonzero bias which is positively aligned with the gradient (

) does not hurt (again, for small stepsizes). When there is no way to
guarantee that the bias is positively aligned with the gradient, one may get back into
control by making sure that the magnitude of the bias is small relative to the magnitude
of the gradient.

The next question is of course, how to estimate the gradient. For this many approaches
have been proposed in the literature. When a simulator is available, as in our case, a
straightforward approach is to start from the policy gradient theorem. Indeed, under mild
regularity conditions (e.g., if there are �nitely many states)  together with  gives

Now note that  is a probability measure over . Let  be an in�nite
sequence of state-action pairs obtained by simulating policy  starting from . In
particular,  and  for any . In addition, de�ne  to be
independent of each other and from the trajectory  and have a
geometric distribution with parameter . Then,

J

G ∇xJ(πx)

Gradient estimation

g(x) = E[G]

b(x) = ∇xJ(πx) − g(x) G − g(x)

O(1/√t)

ε > 0

1/ε2

⟨b(x), ∇xJ(πx)⟩ ≥ 0

(1) (8)

d

dx
J(πx) = ∫

S

~νπx
μ (ds)∫

A

πx(a|s)(
d

dx
logπx(a|s))(qπx(s, a) − b(s,x))λ(da) . (9)

(1 − γ)~νπx
μ S S0,A0,S1,A1, …

πx S0 ∼ μ

At ∼ πx(⋅|St) St+1 ∼ PAt
(St) t ≥ 0 T1,T2

S0,A0,S1,A1, …

1 − γ

( )
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is an unbiased estimate of :

The argument to show this has partially be given earlier in Lecture 8. One can also show
that  has a �nite covariance matrix, as well as that the expected e�ort to obtain  is 

.

Given the hardness result presented in the previous lecture, there is no hope that gradient
methods or any other method will �nd the global optima of the objective function in
policy search in a policy-class agnostic manner. To guarantee computational e�ciency,
one then

Gradient ascent to �nd a good policy (“vanilla policy gradients”) is one possible approach
to take even if it faces these restrictions. In fact, gradient ascent in some cases will �nd a
globally optimal policy.

In particular, it has been long known that with small enough stepsizes gradient ascent
converges at a reasonable speed to a global optimum provided that two conditions hold:

An example when both of these conditions are met is the direct policy parameterization,
which does not allow any compression and is thus not helpful per se, but can serve as a
test-case to see how far policy gradient (PG) methods can be pushed.

In this case, the parameter vector  is  dimensional. By allowing “two-dimensional
index”, , that is, the parameters encode the action selection probabilities in a
direct manner. In this case, since the components of  represent probabilities, they need

G =
1

1 − γ

d

dx
logπx(AT1 |ST1) (

T2−1

∑
t=0

rAT1+t
(ST1+t) − b(ST1 ,x))

d
dx J(πx)

E[G] =
d

dx
J(πx) .

G G

O( 1
1−γ )

Vanilla policy gradients (PG) with some special policy
classes

either needs to give up on convergence to a global optima, or1

give up on generality, i.e., give up on that the method should work for any policy class
and/or policy parameterization.

2

The objective function  is smooth (its derivative is Lipschitz continuous);1 f

The objective function is gradient dominated, i.e., with some constants , , 
satis�es  for any .

2 c > 0 p ≥ 1 f

supx f(x) − f(x′) ≤ c∥f ′(x′)∥p
2 x′ ∈ R

d

θ SA

πθ(a|s) = θs,a

θ
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to be nonnegative and the appropriate components needs to sum to one. Hence,  for
an appropriate set . Accordingly, one needs to change gradient ascent.

This is done as follows: When a proposed update moves the parameter vector outside of ,
the proposed updated parameter vector is “back-projected” to . For the projection there
are a number of reasonable options, such as choosing the point within  which is closest
to the proposed point in the standard Euclidean distance. With this modi�cation, gradient
ascent can be shown to converge at a reasonable speed in this case. This parallels the
methods that were developed for the tabular case (policy iteration, value iteration). In
fact, the algorithm can be seen as a “smoother”, incremental version of policy iteration,
which gradually adjusts the probabilities assigned to the individual actions. Using  to
denote the th policy, from the policy gradient theorem one gets

and

Thus, the probability of an action in a state is increased in proportion to the value of that
state.

That the action-value of action  at state  is multiplied with the discounted occupancy at 
 induced by using policy  started from  is a bit of a surprise. In particular, if a state is

inaccessible under policy , the corresponding probabilities will not be updated. In fact,
because this, the above iteration may get stuck at a suboptimal policy. The reader is
invited to construct an example when this happens. To prevent this, it turns out to be
su�cient if there is a constant  such that it holds that

where  is an optimal policy. Since  appears on both sides and  is unknown, this
condition does not look to helpful. However, if one chooses  to be positive everywhere,
the condition is clearly met. In any case, when  holds, gradient dominance and
smoothness can be both veri�ed, which in turn implies that the above update will
converge at a geometric speed, the geometric speed involves an instance dependent
constant which has no polynomial bound in terms of  and the size of the
state-action space. Needless to say this is quite unattractive.

Policy gradient methods can be sensitive to how policies are parameterized. For
illustration, consider still the “tabular case”, just now change the way the memoryless

θ ∈ Θ

Θ ⊂ [0, 1]SA

Θ

Θ

Θ

πi

i

~πi+1(a|s) = πi(a|s) + αi
~νπi
μ (s)qπi(s, a) ,

πi+1(⋅|s) = arg min
p∈M1(A)

∥p − πi+1(⋅|s)∥2, s ∈ S .

a s

s πi μ

πi

C > 0

~νπ∗

μ (s) ≥ Cμ(s) , for all s ∈ S , (10)

π∗ μ π∗

μ

(10)

Hγ = 1/(1 − γ)
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policies are represented. One possibility is to use the Boltzmann, also known as the
softmax representation. In this case  and

A straightforward calculation gives

and hence

where recall that  is the discounted state-occupancy measure over the state-action
pairs of policy  when the initial state distribution is . The di�erence in the bracket on
the right-hand side is known as the advantage of action  and, accordingly, the function

which is a function mapping state-action pairs to reals, is called the advantage function
underlying policy . To justify the terminology, note that policy iteration can be seen as
choosing in each state the action that maximizes the “advantage”. Thus, we expect that
we get a better policy if the “probability mass” in the action distribution is shifted
towards actions with a larger advantage. Note though that advantages (as de�ned above)
can also be negative and in fact if  is optimal, all actions have nonnegative advantages
only.

The gradient ascent rule prescribes that

where  denotes componentwise product. While this is similar to the previous update, now
the meaning of parameters is quite di�erent. In fact, just because a parameter is increased
does not necessarily mean that the probability of the corresponding action is increased:
This will only happen if the increase of this parameter exceeds that of the other
parameters “at the same state”. By slightly abusing notation with de�ning , we
have

θ ∈ R
S×A

πθ(a|s) =
exp(θs,a)

∑a′ exp(θs,a′)
, (s, a) ∈ S ×A .

∂

∂θs,a
logπθ(a

′|s′) = I(s = s′, a = a′) − πθ(a|s)I(s = s′)

∂

∂θ(s,a)
J(πθ) = ∑

s′

~νπθ
μ (s′)∑

a′

πθ(a
′|s)

∂

∂θs,a
logπθ(a

′|s′)qπθ(s′, a′)

= νπθ
μ (s, a) (qπθ(s, a) − vπθ(s)) ,

νπ
μ

π μ

a

a
π = qπ − vπ ,

π

π

θi+1 = θi + αiν
πθi
μ ∘ a

πθi ,

∘

πi = πθi

πi+1(a|s) ∝ πi(a|s) exp(αiν
πi
μ (s, a)a

πi(s, a)) . (11)
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Just like in the previous update rule, we also see the occupancy measure “weighting” the
update. This is again not necessarily helpful and if anything, again, speaks to the
arbitrariness of gradient methods. And while this does not entirely stop policy gradient to
�nd an optimal policy, and again, one can even show that the speed is geometric, though,
as before, the algorithm altogether fails to run in polynomial time in the relevant
quantities. For this theorem which we give without proof recall that .

Theorem (PG is slow with Boltzmann policies): There exists universal constants 
 such that for any , if  then one can �nd a discounted MDP

with  states and  actions, setting  to be the uniform distribution and initializing the
parameters so that  is the uniform random policy, softmax PG with a constant stepsize
of  takes at least

iterations.

As one expects that without any compression, the chosen planner should behave
reasonably, this rules out the “vanilla” version of policy gradient.

In fact, a quite unsatisfactory property of gradient ascent that the speed at which it
converges can greatly depend on the parameterization used. Thus, for the same policy
class, there are many possible “gradient directions”, depending on the parameterization
chosen. What is a gradient direction for one parameterization is not necessarily a gradient
direction for another one. But what is common about these directions that an
in�nitesimal step along them is guaranteed increase the objective. One can in fact take a
direction obtained with a parameterization and look at what direction it gives with
another parameterizations. To get some order, consider transforming all these directions
into the space that corresponds to the direct parameterization. It is not hard to see that all
possible directions that are within 90 degrees of the gradient direction with this
parameterization can be obtained by considering an appropriate parameterization.

More generally, regardless of parameterization, all directions within 90 degrees of the
gradient direction are ascent directions. This motivates changing the stepsize  from a

Hγ = 1/(1 − γ)

γ0, c,C > 0 γ0 < γ < 1 S > CH 6
γ

S 3 μ

π0

α > 0

c

α
S2Ω(Hγ)

Natural policy gradient (NPG) methods

αi
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scalar to a matrix . Clearly, to keep the angle between the original gradient direction 
and the transformed direction  below 90 degrees,  has to hold. For 
symmetric, this restricts the set of matrix “stepsizes” to the set of positive de�nite
matrices (still, a large set).

There are many ways to choose a matrix stepsize. Newton’s method is to choose it so that
the direction is the “best” if the function is replaced by its local quadratic approximation.
This provably helps to reduce the number of iterations when the objective function is “ill-
conditioned”, though all matrix stepsize methods incur additional cost per each iteration,
which will often o�set the gains.

Another idea, which comes from statistical problems where one often works with
distributions is to �nd the direction of update which coincides with the direction one
would obtain if one used the steepest descent direction directly in the space of
distributions where distances are measured with respect to relative entropy. In some
cases, this approach, which was coined the “natural gradient” approach, has been shown
to give better results, though the evidence is purely empirical.

As it turns out, the matrix stepsize to be used with this approach is the (pseudo)inverse of
the so-called Fischer information matrix. In our context, for every state, we have
distributions over the actions. Fixing a state , the Fischer information matrix becomes

To get the “information rate” over the states, one can sum these matrices up, weighted by
the discounted state occupancy measure underlying  and  to get

The update rule then takes the form

where for a square matrix ,  denotes the pseudoinverse of . Interestingly, the update
direction can be obtained without calculating  and inverting it:

Proposition: We have

Ai g

Aig g⊤Aig ≥ 0 Ai

s

Fx(s) =
d

dx
logπx(⋅|s)

d

dx
logπx(⋅|s)⊤ .

μ πx

F(x) := νπx
μ Fx .

xi+1 = xi + αiF(xi)
†∇xJ(πx) ,

A A† A

F

(1 − γ)F(x)†∇xJ(πx) = arg min
w∈Rd

νπx
μ (w⊤∇x logπx(⋅|⋅) − a

πx)
2

,
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where  and  chooses the minimum -norm solution if multiple
minimizers exist.

Proof: Just recall the formula that gives the solution to a least-squares problem. The
details are left to the reader. 

As an example of how things look like consider the case when  takes the form of a
Boltzmann policy:

where  is a feature-map. Then, assuming that there are �nitely many
actions,

Then, the natural policy gradient update takes the form

where

In the tabular case , no compression),

and thus

Note that this update rule eliminates the term  term that we have previously seen
(cf. ).

NPG is known to enjoy a reasonable speed of convergence, which gives altogether
polynomial planning time. This is promising. No similar results are available for the
nontabular case.

Note that if we (arbitrarily) change the de�nition of  by replacing  above with  and 
 with , we get what has been called in the literature Q-NPG:

a
πx = qπx − vπx arg min ∥ ⋅ ∥2

■

πx

πx(a|s) ∝ exp(x⊤ϕ(s, a)) ,

ϕ : S ×A → R
d

∇x logπx(a|s) = ϕ(s, a) −∑
a′

πx(a′|s)ϕ(s, a′)

ψx(s,a)

.



xi+1 = xi + αiwi ,

wi = arg min
w∈Rd

νπx
μ (w⊤ψx − a

πxi)
2

(d = SA

wi(s, a) = a
πxi(s, a)

πi+1(a|s) ∝ πi(a|s) exp(αia
πi(s, a)) = πi(a|s) exp(αiq

πi(s, a)) .

νπi
μ (s, a)

(11)

wi ψx ϕ

aπx qπx
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Note that the only di�erence between Q-NPG and Politex is that in Politex one uses

where  is the measure obtained from solving the G-optimal design problem.

The price of not using  but using  in Q-NPG is that the approximation error in Q-NPG
becomes

where

gives a bound on how much the distribution  di�ers from that of obtained when the
optimal policy  is followed from . As was argued before, it is necessary that  is �nite
for policy gradient methods not to “get stuck” at local optima. However,  can be
arbitrarily large even for �nite state-action MDPs; an in fact it is the presence of  that
makes the policy gradient with the direct parameterization a slow algorithm.

In contrast, the same quantity in Politex is

Not only the uncontrolled constant  is removed, but the dependence on the planning
horizon is also improved. Other than these di�erences, the results available for Q-NPG
are similar to that of Politex and in fact the proof technique to obtain the results is also
the same.

For completeness, here is the proof of . For the proof recall that for a function 
,  is the unique linear operator (row vector, in the Euclidean case) that satis�es

Hence, it su�ces to show that

wi = arg min
w∈R

d
νπx
μ (w⊤ϕ − qπx)

2
.

wi = arg min
w∈Rd

ν̂(w⊤ϕ − qπx)
2

,

ν̂

ν̂ νπx
μ

Cε

(1 − γ)1.5

C =
d~νπ∗

μ

dμ
∞∥ ∥μ

π∗ μ C

C

C

√dε

1 − γ
.

C

The proof of the Calculus 101 result
(2) g : R

d → R

d
dx g(x0)

g(x) = g(x0) +
d

dx
g(x0)(x − x0) + o(∥x − x0∥) as x → x0 .
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To minimize clutter we will write  for  (and similarly we write 
 for ).

By de�nition we have

and

Putting these together we get

where the last equality follows if  as , i.e., if 
is continuous at .

That the result also holds under the assumption that  is continuous at 
follows from a symmetric argument. 

While policy gradient methods remain extremely popular and the idea of directly
searching in the set of policies is attractive, at the moment it appears that they not only
lack theoretical support, but the theoretical results suggest that it is hard to �nd any
setting where policy gradient methods would be provably competitive with alternatives.
At minimum, they need careful choices of policy parameterizations and even in that case
the update rule may need to be changed to guarantee e�ciency and e�ectiveness, as we
have seen above. As an approach to algorithm design their main advantage is their
generality and a strong support through various software libraries. Compared to vanilla
“dynamic programming” methods they make generally smaller, more incremental
changes to the policies, which seems useful. However, this is also achieved by methods

f(x′,x′) = f(x,x) + (
∂

∂u
f(u,x)|u=x +

∂

∂v
f(x, v)|v=x)(x′ − x) + o(∥x′ − x∥) .

∂
∂u f(x′,x) ∂

∂u f(u,x)|u=x′

∂
∂v f(x,x′) ∂

∂v f(x, v)|v=x′

f(x′,x′) = f(x′,x) +
∂

∂v
f(x′,x)(x′ − x) + o(∥x′ − x∥)

f(x′,x) = f(x,x) +
∂

∂u
f(x,x)(x′ − x) + o(∥x′ − x∥) .

f(x′,x′) = f(x,x) + (
∂

∂v
f(x′,x) +

∂

∂u
f(x,x))(x′ − x) + o(∥x′ − x∥)

= f(x,x) + (
∂

∂v
f(x,x) +

∂

∂u
f(x,x))(x′ − x)

+(
∂

∂v
f(x′,x) −

∂

∂v
f(x,x))(x′ − x) + o(∥x′ − x∥)

= f(x,x) + (
∂

∂v
f(x,x) +

∂

∂u
f(x,x))(x′ − x) + o(∥x′ − x∥) .

∂
∂v f(x′,x) − ∂

∂v f(x,x) = o(1) x′ → x x′ ↦ ∂
∂v f(x′,x)

x′ = x

x′ ↦ ∂
∂u f(x,x′) x′ = x

■

Summary
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like Politex, which is derived using a “bound minimization” approach. While this may
seem more ad hoc than following gradients, in fact, one may argue that following
gradients is more ad hoc as it fails to guarantee good performance. However, perhaps the
most important point here is that one should not care too much about how a method is
derived, or what “interpretation” it may have (is Politex a gradient algorithm? does this
matter?). What matters is the outcome: In this case how the methods perform. It is thus
wise to learn about all possible ways of designing algorithms, especially since there is
much room for improving the performance of current algorithms.

Philip Thomas (2014, see citation below) takes a careful look at the claims surrounding
natural gradient descent. One claim that is often heard is that natural gradient descent
will speed up convergence. This is usually back up by giving a demonstration (e.g.,
Kakade, 2002, or Amari, 1998). However, it is far from clear whether this speedup will
necessarily happen. As it turns out, this is far from being true. In fact, natural policy
gradient can cause divergence even where following the normal gradient is guaranteed to
converge to a global optimum. An example of this is given in Section 6.5 of the paper of
Thomas (2014).
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