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RL Theory

Planning in MDPs / 10. Planning under  realizability

The lesson from the last lecture is that efficient planners are limited to induce policies whose
suboptimaly gap is polynomially larger than the misspecification error of the feature-map
supplied to the planner. We have also seen) that if we accept this polynomial in the feature-
space-dimension error amplification, a relatively straightforward adaptation of policy iteration
gives rise to a computationally efficient (global) planner – at least, when the planner is furbished
with the solution to an underlying optimal experimental design problem. In any case, the planner
is query efficient.

All this was shown in the context when the misspecification error is relative to the set of action
value functions underlying all possible policies. In this lecture we look into whether this error
metric could be changed so that the misspecification error is measured by how well the optimal
action-value function, , is approximated by the features, while still retaining the positive
result. As the negative result already implies that there are no efficient planners unless the
suboptimality gap of the induced policy is polynomially larger than the approximation error, we
look into the case when the optimal action-value function is perfectly representable with the
features supplied to the planner. This assumption is also known as “ -realizability”, or, “
linear realizability”, if we want to be more specific about the nature of the function
approximation technique used.

We consider fixed horizon online planning in large finite MDPs . As usual, the
horizon is denoted by  and we consider planning with a fixed initial state , as in the
previous lecture. Let us denote by  the states that are reachable from  in  steps. As
before, we assume that  when . Recall that in this case the action-value
functions depend on the number of steps left, of the current stage. For a fixed , let

 be the optimal action-value function with  stages in the process, 
stages left. Since we do not need the values of  outside of , we abuse notation by
redefining it restricted to this set.

Important note: The indexing of  used here is not consistent with the indexing used in the
previous lecture, where it was more convenient to index value functions based on the number
of stages left.

The planner will be given a feature map  for every stage  such that 
. The realizability assumption means that
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Note that we demand that the same parameter vector is shared between all stages. As it turns
out, this makes our result stronger. Regardless, at the price of increasing the dimension from  to

, one can always assume that the parameter vector is shared. Since we will give a negative
result concerning the query-efficiency of planners, we allow the planners access to the full
feature-map: The negative result still applies even if the planner is allowed to perform any sort of
computation with the feature-map during or before the planning process.

For , we call an online planner -sound for the -step criterion if for any MDP  and
feature map  pair such that the optimal action-value function of  is realizable with
the features  in the sense that  holds, the planner induces a policy that is -suboptimal or
better when evaluated with the -horizon undiscounted total reward criterion from the
designated start-state  in MDP . Note that this is very much the same as the previous 

 soundness criterion, except that the definition of the approximation error is relaxed,
while we demand .

The result below uses MDPs where the immediate reward (obtained from the simulator) can be
random. The random reward is used to make the job of the planners harder and it allows us to
consider MDPs with deterministic dynamics. (The result could also be proven for MDPs with
deterministic rewards and random transitions.)

The usual definition of MDPs with random transitions and rewards is in a way even simpler:
Such a (finite) MDP is given by the tuple  where  is a collection of
distributions over state-reward pairs. In particular, for all state-action pairs , 

. Letting  (i.e.,  is drawn from  at random),
we can recover  as the distribution of  and  as the expected value of . That the
reward can be random forces a change to the notion of the canonical probability spaces, since
histories now also show include rewards,  incurred in each time step .
With appropriate modifications, we can nevertheless still introduce  and the corresponding

expectation operator, , as well. The natural definition of the value of a policy  at state , say,

in the discounted setting is then . However, it is easy to see that for any 
, , and, as such, nothing changes in the theoretical results derived so

far.

For  reals, let . The main result of this lecture is as follows:

Theorem (worst-case query-cost is exponential under -realizability): For any  large
enough and any online planner  that is -sound for the -horizon planning problem,
there exists a triplet  where  is a finite MDP with random rewards taking values in 
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 and deterministic transitions,  is a state of this MDP and  is a -dimensional feature-
map such that  holds for the optimal action-value function  and the
expected number of queries  that  uses when interconnected with  satisfies

Note that with random rewards with no control on their tail behavior (e.g., unbounded variance)
it would not be hard to make the job of any planner arbitrarily hard. As such, it is quite important
that the MDPs that are constructed for the result, the rewards, while random, lie in a fixed
interval. Note that the specific choice of this interval does not matter: If there is a hard example
with some interval, that example can be translated into another by shifting and scaling, and at
the price of introducing an extra dimension in the feature map to account for the shifts. A similar
comment applies to  (which, nevertheless, needs to be scaled to the range of the
rewards).

Rather than giving the full proof, we will just explain the main ideas
behind it. At a high-level, the proof merges the ideas behind the lower
bound for the small action-set case and the lower bound of the large
action-set case. That is, we will consider an action set that is
exponentially large in . In particular, we will consider action sets that
have  elements.

Note that because realizability holds, having a large action set but with a
trivial dynamics (as in the lower bound in the last lecture) does not lead
to the lower bound of the desired form. In particular, if the dynamics are
trivial (i.e., , see the figure on the right) then the optimal action
to be taken at  does not depend on what actions are taken at later
stages and can be efficiently found by just maximizing for the reward
received in that stage, which can be done efficiently due to our realizability assumption, even in
the presence of random rewards. Whether an example exists with only a few actions but with a
more complicated dynamics remains open. With the construction provided here (which is based
on tree dynamics and zero intermediate reward in the tree), this clearly fails, as we will make it
clear below.

In any case, since the “chain dynamics” does not work, the next simplest approach is to have a
tree, but with exponentially many actions in every node. Since this creates many many states (

 states at stage ) the next question then is how to ensure realizability. There are two
issues: We need to be able to keep the dimension fixed at  at every stage and somehow we will
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need to have a way of controlling which action should be optimal at each state at each stage.
Indeed, realizability means that we need to ensure that for all  and 

,

Here,  stands for the state that is reached by taking action  in state  (in the tree, every node,
or state is uniquely indexed by the action sequence that reaches it). Now, in the definition of ,
for all , we also have , which calls for the need to know the identity
of the maximizing action. What is more, since the solution to the Bellman optimality equations is
unique, if we guarantee that  holds at all state-action pairs for  with
some features and parameter vectors, it also follows that  for all , that is,  is
realizable with the features.

A simple approach to resolve all of these issues is to let a fixed action  be the optimal
action at all the states, together with using the JL features from the previous lecture (the identity
of this action is of course hidden from the planner). In particular, the JL feature-matrix lemma
from the previous lecture furnishes us with  -dimensional unit vectors  such that for 

,

Fix these vectors. That  should be optimal at all states  is equivalent to that

In our earlier proof we used  and . Will this still work? Unfortunately, it
does not. The first observation is that from this it follows that for any , , ,

As such, for almost all the actions , we expect  to be close to . Now, under this
choice we also have that  for all states and all stages . This creates
essentially the same problem as what we saw above with the trivial chain dynamics. In particular,
from  we get that . As such, we expect  to be close to either  or 

 (since  is close to ). Putting aside the issue that we wanted the immediate
reward be in , we see that if the reward noise is not large,  and thus the identity of  can
be obtained with just a few queries: The signal to noise ratio is just too good!

This problem replicates itself at the very last stage: Here,  for any state , hence
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for any  pair. Unless we choose  to be small, say, , a planner will succeed
with fewer queries than in our desired bound.

This motivates us to introduce a scaling of the features (recall that the parameter vector is
shared between the stages) with some scaling factors. For maximum generality, we allow for the
scaling factor of the feature vector of  to depend on  itself (since states
between stages are not shared, scaling can depend on the stage with this choice). Let 

 be the scaling factor we intend to use with  where we intend to keep  in a
constant range (so the scaling with the stage index works as intended) while we aim to use 

.

Now, we can explain the need for many actions. By the Bellman optimality equation  we have
that for any suboptimal action, ,

where  uses that . From this we see that close to the initial state  the
reward gaps are of constant order. In particular, if there were only a few actions per state, a
planner could identify the optimal action by finding the action whose reward is significantly
larger than that of the others. By choosing to have many actions, the planner faces a “needle-in-
a-haystack” situation, which makes their job hopeless even with perfect signal (no noise).

The next idea is to force “clever” planners to only experiment with actions in the last stage.
Since here, the signal-to-noise ratio will be very poor, if we manage to achieve this, even clever
planners will need to use a large number of queries. A simple way of forcing this is to choose all
the rewards while transitioning in the tree and taking suboptimal actions to be identically zero
except for stage , where, in accordance to our earlier plan, the rewards are chosen at
random to ensure consistency but the signal to noise ratio will be poor.

Since the dynamics in the tree is known, and it is known that all rewards are zero with the
possible exception of when using the optimal action (one of exponentially many actions and is
thus hard to find), planners are either left with either solving the needle in a haystack problem of
identifying the optimal action by randomly stumbling upon it, or they need to experiment with
actions in the last stage. That the rewards are chosen to be identically zero is not critical: From
the point of view of this argument, what is critical is that they are all the same.

It remains to be seen that consistency can be achieved and also that the optimal action at  has a
large value compared to the values of suboptimal actions at the same state. Here, we still face
some challenges with consistency. Since we want the immediate rewards to belong to the 
interval, all the action values have to be nonnegative. As such, it will be easier if we introduce an
additional bias component  in the feature vectors, which we allow to scale with the stage.

To summarize, we let
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while we propose to use

It remains to show that  and  can be satisfied with , while also
keeping the suboptimal gap of  at  large, and while the last stage rewards ( ) are in 

and are of size  as planned.

Assume for a moment that  is optimal in all states, i.e., that  holds. Then,  is also optimal
in state , hence, under ,  for any  is equivalent to

where we also used that by assumption  because . Plugging in the definitions,
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Note that this is consistent with . The next challenge is to show that  stays within a
constant range. In fact, with the above definition, this will not hold. In particular, when ,
the right-hand side can be as large as , which means that the scaling
coefficients will exponentially increase with a base of . Note, however, that if , then
provided that  (which can be ensured at the root by choosing  for all
actions ),

and thus  will also hold.

Hence, we modify the construction so that the definition  is never needed for . This is
achieved by changing the dynamics: We introduce a special set of states, , the exit
lane. Once, the process gets into this lane, there is now return and in fact all the remaining
rewards up the end are zero. Specifically, all the actions in  lead to state  and we set the
feature vector of all states in the exit-lane zero:

This way, regardless the choice of the parameter vector, we ensure that the Bellman optimality
equations hold at these state and the optimal values are correctly set to zero.

The exit lane is introduced to remove the need to use  with repeat actions. In particular, for
any  with some , say,  (i.e.,  is obtained by following these actions)
then if for , the next state is . Since the optimal value of  is zero and we
don’t intend to introduce an immediate reward, we set

making the value of repeat actions zero. The next complication is that this ruins our plan to keep
 optimal at all states: Indeed,  could be applied multiply times in a path from  to a leaf of

the tree, and by the second application, the new rule forces the value of  to be zero. Hence, we
need to modify this rule when the action is .

Clearly, whether a suboptimal action, or  is repeated is problematic for the recursive definition
of . Hence, it is better if  is also forced to use the exit lane. Thus, if  is used in  with 

, the next state is . However, we do not zero out , but keep the recursive definition
and we rather introduce an immediate reward to match . It is not hard
to check that this reward is also in the  range. Note that here if  then by
definition . This completes the description of the structure of the MDPs.

That the action gap at  is large follows from the choice of the JL feature vectors.
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It remains to be seen that  is indeed the optimal action at any state. This boils down to checking
that for , . When  is a repeat action, this is trivial. When

 is not a repeat action, we have

where we used that  and  and thus  by the
choice of  and since .

Let  denote the MDP constructed this way when the optimal action is  (the feature maps, of
course, are common between these MDPs). For a formal proof, one also needs to argue that
planners that do not use many queries cannot distinguish between these MDPs. Intuitively, this is
because such planners will receive, with high probability, identical observations under different
MDPs in this class. As such, these planners can at best randomly choose an action (“needle in a
haystack”) and since in MDP  only action  incurs high values, they cannot induce a policy
with a near-optimal value.

In the construction given the number of actions was allowed to scale exponentially with the
dimension. The above proof would show a separation between the query and computation
complexity of planning, if one could demonstrate that there is a choice of the JL feature vectors
when the optimization problems

admits a computationally efficient solver regardless of the choice of  and  (for
simplicity, we suppress dependence on ). Whether such a solver exist will depend on the choice
of the feature-map and this is a fascinating question on its own. One approach to arrive at such a
solver is to rewrite this problem as the problem of finding

where  is the convex hull of the feature vectors . Provided that this problem
admits an efficient solution and given any extreme point of , we can efficiently recover an
action  such that  (this amounts to “inverting” the feature map), the first
problem can also be solved efficiently.

Note that  is a linear optimization problem over a convex set  and the question whether this
problem admits an efficient solver lies at the heart of computer science. The general lesson is that
the answer can be expected to be yes when  has some “convenient” description other than the
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one that is used to define it. The second problem of inverting the feature map is known as the
“decomposition problem” and the same conclusions hold for this problem.

It is possible to modify the construction to make it work in the discounted setting. The paper
cited below shows how.

Back to the finite horizon setting, for an upper bound, one can employ the least-squares value
iteration algorithm with -optimal design (LSVI-G), which we have met in Homework 2.
What results is that to get a -sound (global) planner with this approach,

queries are sufficient (and the compute cost is also of similar order). We see that as far as the
exponents in the lower and upper bounds are concerned, in the upper bound the exponent is 

 while in the lower bound it is . Thus, there remains a logarithmic gap
between them when , while the gap is unbounded when , i.e., for long horizon
problems. In particular, in the constant dimension and long-horizon featurized planning
problem, the LSVI-G algorithm seems to be suboptimal because it calculates the optimal action-
value function stage-wise. One conjectures that the upper bound for LSVI-G is tight, while the
lower bound in this lecture is also essentially correct. This would means that there is an alternate
algorithm that could perform much better than LSVI-G in large-horizon planning with constant
feature-dimension. Clearly, for the specific construction used in this lecture, a planner that tries
all actions, say at , will find the optimal action and the cost of this planner is independent of
the horizon. Hence, at least in this case, the lower bound can be matched with an alternate
algorithm. One may think that this problem is purely of theoretical interest. To counter this note
that long-horizon planning is a really important practical question: Many applications require
thousands of steps, if not millions, while perhaps the feature space dimension does not need to
be very large. Whether there exist an algorithm that works better than LSVI-G thus remains to be
a fascinating open problem with good potential for having a real impact on applications.

For infinite horizon undiscounted problems and  realizability, there is a simple example
that shows that with  actions and -dimensional features, any query efficient planner
that guarantees a constant suboptimality gap needs  queries per state. This is based
on a shortest path problem on a regular grid. Here, the obstruction is simply algebraic: There
is no noise in either the transitions or the rewards.

This lecture is entirely based on the paper
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Weisz, Gellert, Philip Amortila, and Csaba Szepesvári. 2020. “Exponential Lower Bounds for
Planning in MDPs With Linearly-Realizable Optimal Action-Value Functions.”,

which is available on arXiv and which will also soon appear at ALT.

The second lower for the undiscounted setting mentioned in the notes is from

Weisz, Gellert, Philip Amortila, Barnabás Janzer, Yasin Abbasi-Yadkori, Nan Jiang, and Csaba
Szepesvári. 2021. “On Query-Efficient Planning in MDPs under Linear Realizability of the
Optimal State-Value Function.”

available on arXiv.

A beautiful book that is a very good source on reading about the linear optimization problem
mentioned above is

Grotschel, Martin, László Lovász, and Alexander Schrijver. 1993. Geometric Algorithms and
Combinatorial Optimization. Vol. 2. Algorithms and Combinatorics. Berlin, Heidelberg:
Springer Berlin Heidelberg.
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