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RL Theory

Planning in MDPs / 11. Planning under  realizability (TensorPlan I.)

In the last lecture we saw that under  linear realizability, query-efficient fixed-horizon
online planning with a constant suboptimality gap is intractable provided that there is no
limit on the number of actions. In particular, the MDPs that were used to show

intractability use  actions, where  is the dimension of the feature-map that realizes
the optimal action-value function. At the end of the lecture, we also noted that
intractabality also holds for undiscounted infinite horizon problems under  linear
realizability in the regime when the number of actions scales linearly with . In this
lecture we further dissect  realizability, but return to the fixed horizon setting and we
will consider the case when the number of actions is fixed. As it turns out, in this case,
query-efficient online planning is possible.

Before giving the details of this result, we need to firm up some and refine other
definitions. First,  realizability under a feature map  in the -
horizon setting means that

where  is the optimal-value function when  steps are left (in particular, ).
Again, this uses the indexing introduced in the previous lecture. In what follows, without
the loss of generality we assume that the feature map is such that all the feature-vectors
lie within the a ( -norm) ball of radius one. When realizability holds with a parameter
vector bounded in -norm by , we say that  is -realizable under the feature map .

We also slightly modify the interaction protocol between the planner and the simulator,
as shown on the figure below. The main new features are introducing stages, and
restricting the planners to access states and features only through local calls to the
simulator.
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Illustration of the interaction protocol between the planner and the simulator.

Because in fixed-horizon problems the stage index influences what actions should be
taken, the planner is called with an initial state  and a stage index . For defining the
policy induced the planner, it is assumed that the planner is first called with  at
some state, then it is called with  with a state obtained following a transition by
taking the action returned by the planner, etc. While interacting with the simulator, the
planner is restricted to use only states that it has encountered before. Also, the planner
can feed a stage index to the simulator, to get the features of the next state corresponding
to the incremented input stage index. There is no other access to the features. Note also
that just like in the previous lecture, we allow the MDPs to generate random rewards.

In this setting a -sound planner is one which, under the above protocol, induces a policy
of the MDP whose simulator it interacts with which is at most -suboptimal.

Theorem (query-efficient planning under -realizability): For any integers 
and reals , there exists an online planner  with the following properties:
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Note that for  fixed the query-cost is polynomial in  and . It remains to
be seen whether this bound can be improved. However, this is somewhat of a theoretical
question as under -realizability, even if the coefficients  that realize  are
known, in the lack of extra information, one needs to perform  simulation calls to be
able to get good approximations to the action-value function , which seems necessary
for inducing a good policy. Hence, the query cost must scale at least linearly with ,
hence, no algorithm is expected to be even query-efficient when the number of actions is
large.

The planner that is referred to in the previous theorem is called TensorPlan. The reason
for this name will become clear after we describe the algorithm.

TensorPlan belongs to the class of optimistic algorithms. Since knowing , the
parameter vector that realizes , would be sufficient for acting near-optimally, the
algorithm aims to find a good approximation to this vector.

A suitable estimate is constructed in a two-step process:

Here,  is the initial state of the episode, i.e., this is the state the planner is called when 
. Recalling that , we see that provided that ,

where, for convenience, we introduce . When  is close enough to ,
one hopes that the policy induced by  will be near-optimal. Hence, the approach is to
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The algorithm maintains a non-empty “hypothesis” set , which contains
those parameter vectors that are consistent with the data that the algorithm has seen.
The details of the construction of this set are at the heart of the algorithm and will
come soon.
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“roll out” with the induced policy (using the simulator) and verify whether during the
rollout the data received is consistent with the Bellman equation, and as a result of this,
also whether the episode return observed is close to . When a contradiction to
any of these is detected, the data can be used to shrink the set  of consistent parameter
vectors.

The approach described leaves open the question of what we mean by a policy “induced”
by . The naive approach is to base this on the Bellman optimality equation, which states
that

holds for  with . If ,  will also satisfy this
equation and thus one might define the policy induced by  that achieves the maximum
above when  is replaced by . Consistency of  would also mean checking
whether  holds (approximately) when  is replaced in this equation by ,
which, one may imagine can be checked by generating data from the simulator.

While this may approach work, it is not easy to see whether it does. (It is open problem
whether this works!) TensorPlan defines induced policies and consistency slightly
differently. The changed definition allows not only for proving that TensorPlan is query-
efficient, but it even makes the guarantees for TensorPlan stronger than what was
announced above in the theorem.

What makes the analysis of the algorithm that is based on the Bellmean optimality
equation difficult is the presence of the maximum in this equation. Hence, TensorPlan
removes this maximum. Accordingly, the policy induced by  is defined as any policy 
which in state  and stage  chooses any action  which ensures that

If there is no such action,  is free to choose any action. We say that local consistency
holds at  when there exists an action  such that  holds.

If there are multiple actions that satisfy , any of them will do: Choosing the
maximizing action is not enforced. However, when  is realizable and , any
action that satisfies  will be a maximizing action and the policy induced will be
optimal.

The advantage of the relaxed notion of induced policy is that with this choice, TensorPlan
will also be able to compete with any deterministic policy whose value-function is
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realizable. This expands the scope of TensorPlan: Perhaps the optimal value function is
not realizable with the features handed to TensorPlan, but if there is any deterministic
policy whose value-function is realizable with them, then TensorPlan will be guaranteed
to produce almost as much as reward as that policy. In fact, it will produce nearly as much
reward as the policy that achieves the best value.

To summarize, after generating a hypothesis , TensorPlan will run a number of rollouts
using the simulator so that for each state  encountered TensorPlan first finds an action 
satisfying . If this succeeds, the rollout continues by TensorPlan getting a next state
from the simulator at  and  is incremented. This continues up to , which
ends a rollout. TensorPlan will run  rollouts of this type and if all of them succeeds,
TensorPlan stops and will use the parameter vector  in the rest of the episode and the
same policy  as used during the rollouts. If during the rollouts an inconsistency is
detected, TensorPlan will decrease the hypothesis set  and continue with a next
experiment.

It remains to be seen why TensorPlan (1) stops with a bounded number of queries and (2)
why it is sound.

We start with boundedness. This is where the change of how policies are induced by
parameters is used in a critical manner. Introduce the discriminants:

Note that  is just the difference between the right-hand and the left-hand
side of , where we plugged in the definition  and  and we define

thus  is the “expected next feature vector” given . Then, by definition,
local consistency holds for  if and only if there exists some action  such that

. Exploiting that the product of numbers is zero if and only if some of
them is zero, we see that local consistency is equivalent to
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The reason this purely algebraic reformulation of local consistency is helpful is because
the product of the discriminants can be see as a linear function of the -fold tensor
product of .

To see why this holds, it will be useful to introduce some extra notation: For a real  and a
finite-dimensional vector , we will denote by  the vector  (i.e., adding  to the
first position and shifting down all other entries in ). With this notation, we can write
the discriminants as an inner product:

Now, recall that the tensor product  of vectors satisfies the following property:

where the inner product between two tensors is defined in the usual way, by overlaying
them and then taking the sum of the products of the entries that are on the top of each
other.

Based on this identity, we see that , and thus local consistency, is equivalent to

Note that while  is a nonlinear function of , the above equation is linear
in .

Imagine for a moment that the data  above can be obtained with no errors and
assume that  is realizable. Let . We can think of both  and 
taking values in  (this corresponds to “flattening” these tensors).

TensorPlan can be seen as an algorithm that generates a sequence 
such that  is the th hypothesis that TensorPlan chooses,  is the th data
of the form  with some  where TensorPlan detects an inconsistency. When
inconsistency is detected, the hypothesis set is shrunk:
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Let . By its construction, for any ,  and hence  is orthogonal to 
. Also by its construction,  is not orthogonal to . Because of this, 

cannot lie in the span of  (if it did, it would be orthogonal to ). Hence, the
vectors  are linearly independent. As there are at most  linearly independent
vectors in , Tensorplan will generate at most  of these data vectors (in fact, for
TensorPlan, this is , can you explain why?). This means that after at most 
“contradictions” to local consistency, TensorPlan will cease to detect more
inconsistencies and thus it will stop.

It remains to be seen that TensorPlan is sound. Let  be the parameter vector that
TensorPlan generated when it stops. This means that during the  rollouts, TensorPlan
did not detect any inconsistencies.

Take a trajectory  generated during the th rollout of 

rollouts. Since there is no inconsistency along it, for any  we have

Hence, with probability ,

where the first inequality is by Hoeffding’s inequality and uses that rewards are bounded
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inequality and uses that

Θi = {θ ∈ Bd
2(B) : F(θ)⊤x1 = 0, … ,F(θ)⊤xi−1 = 0}.

fi = F(θi) i ≥ 1 θi ∈ Θi fi
x1, … ,xi−1 xi fi xi

x1, … ,xi−1 fi
x1,x2, … k

R
k k

k − 1 k

Soundness
θ+

m

S
(i)
0 ,A(i)

0 , … ,S (i)
H−1,A(i)

H−1,S (i)
H i m

0 ≤ t ≤ H − 1

r
A

(i)
t

(S
(i)
t ) = vt(S

(i)
t ; θ+) − ⟨P

A
(i)
t

(S
(i)
t ), vt+1(⋅; θ+)⟩ . (6)

1 − ζ

v
πθ+

0 (s0) ≥
1

m

m

∑
i=1

t−1

∑
t=0

r
A

(i)
t

(S
(i)
t ) − H√

log(1/ζ)

2m

=
1

m

m

∑
i=1

t−1

∑
t=0

vt(S
(i)
t ; θ+) − ⟨P

A
(i)
t

(S
(i)
t ), vt+1(⋅; θ+)⟩ − H√

log(2/ζ)

2m

≥
1

m

m

∑
i=1

t−1

∑
t=0

vt(S
(i)
t ; θ+) − vt+1(S

(i)
t+1; θ+) − (H + 2B)√

log(2/ζ)

2m

= v0(s0; θ+) − (H + 2B)√
log(2/ζ)

2m
,

[0, 1] (6)

⟨P
A

(i)
t

(S (i)
t ), vt+1(⋅; θ+)⟩ = E[vt+1(S (i)

t+1; θ+)|S (i)
t ,A(i)

t ]



5/16/22, 11:22 PM 11. Planning under $v^*$ realizability (TensorPlan I.) - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec11/ 8/10

and that  is bounded between  (note that we could truncate  to  to
replace  above by ), while the last equality uses that  by

definition and that  by definition. Setting  high enough (

) we can guarantee

We now argue that this implies soundness.

Letting  be the set of -bounded parameter vectors  such that for some
deterministic policy , . By the definition of  and , for any , 
(no correct hypothesis is ever eliminated). It also follows that at any stage of the process,

Hence, when TensorPlan stops with parameter , with high probability,

In particular, if  is -realizable, . Thus, after stopping, for the
rest of the episode, TensorPlan can safely use the policy induced by .

So far we have seen that if somehow TensorPlan would be able to get  with no
errors, (1) it would stop after refining its hypothesis set at most  times and (2) when it
stops, with high probability it would return with a parameter vector that induces a policy
with high value. Regarding the number of queries used, if obtaining  is
counted as a single query, TensorPlan would need at most 
queries (  rollouts, for each of the  states in the rollout,  queries are needed).

It remains to be seen how to adjust this argument to the case when  need to
be estimated based on interactions with a stochastic simulator.

It is not known whether TensorPlan can be computationally efficiently implemented. I
suspect it cannot. This is because  is specified with a number of highly nonlinear
constraints (in the parameter vector).
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The essence of the construction here is lifting the problem into a higher-dimensional
linear space. This is a standard technique in machine learning but in a very different
context when data is mapped to a higher dimensional space to strengthen the power of
linear predictors. The once popular RKHS methods take this to the extreme. Note that
here, in contrast to this classic lifting procedure, the parameter vector is mapped
through a nonlinear function to a higher dimensional space and the purpose is to
simply have a clear grasp on why learning stops.

We call  here the discriminant function because what is important about it is that it
discriminates between “good” and “bad” cases and it does it by using the special value
of zero. Readers familiar with the RL literature will note, however, that  is nothing
but, what is known as the “temporal difference error” (under some fixed action).

It is curious that the algorithm builds up a data-bank of critical data that it uses to
restrain the set of parameter vectors and that it is quite selective in adding new data
here. That is, TensorPlan may generate a lot more data then goes on the list .
If we wanted to be philosophical and would not mind antropomorphising algorithms,
we could say that TensorPlan remembers what it is “surprised by”. This is very much
unlike other algorithms, like LSVI- , which may generate a lot of redundant data. The
other difference is that TensorPlan uses the data to generate a hypothesis set. The
choice of the parameter vector from this set is dictated by the optimization (reward
maximization) problem solved by TensorPlan.

There are quite a few examples of optimistic algorithms in planning; there is a
considerable literature of using optimisim in tree search. However, classics, such as
the  algorithm can also be seen as an optimistic algorithm (at least when used with
an “admissible heuristic”, which is just a way of saying that  uses an optimistic
estimate of the values). The  algorithm is another example. However, the real
“homeland” of optimistic algorithms in online learning, a topic that will be covered
later in the course.

This lecture is entirely based on the paper

Weisz, Gellert, Philip Amortila, Barnabás Janzer, Yasin Abbasi-Yadkori, Nan Jiang, and
Csaba Szepesvári. 2021. “On Query-Efficient Planning in MDPs under Linear
Realizability of the Optimal State-Value Function.”

available on arXiv.
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