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RL Theory

Planning in MDPs / 16. Policy gradients

In this last lecture on planning, we look at policy search through the lens of applying
gradient ascent. We start by proving the so-called policy gradient theorem which is then
shown to give rise to an e�cient way of constructing noisy, but unbiased gradient
estimates in the presence of a simulator. We discuss at a high level the ideas underlying
gradient ascent and stochastic gradient ascent methods (as opposed to more common
case in machine learning where the goal is to minimize a loss, or objective function, we
are maximizing rewards, hence ascending on the objective rather than descending). We
then �nd out about the limitations of policy gradient even in the presence of “perfect
representation” (unrestricted policy classes, tabular case) and perfect gradient
information, which motivates the introduction of a variant known as “natural policy
gradients” (NPG). We then uncover a close relationship between this method and Politex.
The lecture concludes with comparing results for NPG and Politex.

Fix an MDP  and a discount factor . Continuing from the last
lecture for  let  be a stochastic policy: . Further, �x a distribution 

 over the states and for a policy  let

denote the expected value of using policy  in  from an initial state randomly chosen
from . The policy gradient theorem gives su�cient conditions under which the map 

 is di�erentiable at some parameter  and gives a “simple” expression for
the gradient as a function of . Just to demistify this, for �nite (or discrete) action
spaces, for a memoryless policy  and function ,  is a function mapping
states to reals de�ned via

Hence, the derivative,  is actually quite simple. It is a function mapping states to 
dimensional vectors which satis�es

16. Policy gradients

The policy gradient theorem
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The theorem we give though is not limited to this case and also applies to when the action
space is in�nite and even when the policy is deterministic. For the theorem statement,
recall that for a policy  we used  to denote its discounted state occupancy measure.
Also, for a function , we use  to denote its derivative.

Theorem (Policy Gradient Theorem): Fix an MDP . For , de�ne the maps 
 and . Fix . Assume that at least one of the following

two conditions is met:

Then,  is di�erentiable at  and

where the last equality holds if  is �nite.

For the second expression, we treat  as an  matrix. Note that this �ts well
with our convention of treating functions as “column vectors” (hence  is a vector
of dimension ) and with the standard convention that a “vector derivative” creates “row
vectors”.

Above, the second expression where we moved the derivative with respect to the
parameter inside the expression will only be valid in in�nite state spaces when some
additional regularity assumption is met. One such assumption is that 

 is -integrable.

In words, the theorem shows that the derivative of the performance of a policy can be
obtained by integrating a simple derivative that involves the action-value function of the
policy.

Of the two conditions of the theorem, the �rst condition is the one that is generally easier
to verify. In particular, the condition on the continuous di�erentiability of  at 
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 is usually easy to verify. To show the di�erentiability of  at  just recall
that if the partial derivatives of a function exist and are continuous the function is
di�erentiable. Then recall that  and hence its di�erentiability with
respect to (say)  follows if  is continuously di�erentiable at . In e�ect,
for �nite state-action spaces, di�erentiability at  follows (and the conditions of the
theorem are satis�ed) as long as for any  state-action pair, the maps  have
continuous partial derivatives at .

Proof: The proof is based on a short calculation that starts with writing the value
di�erence identity for , multiplied from the right by , taking derivatives and
then letting .

The details are as follows: Recall from Calculus 101 the following result: Assume that 
 satis�es at least one of the two conditions:

Then  is di�erentiable at  and

Let  be two memoryless policies. By the value di�erence identity,

where the last equality just used that that . Now let 
and  and multiply the value di�erence identity from the left by  to get

Now, focusing on the �rst term on the right-hand-side, let

Provided that  is su�ciently regular in a neighborhood of  (to be discussed later), 
gives that
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Taking the derivative of both sides of  with respect to  and using the above display we
get

Now let . Then, . Hence, the �rst and the third term of the
above display cancel each other and we get

Finally, the conditions to apply  to our  in  are met by our assumption on  and ,
�nishing the proof. 

When the action-space is discrete and  are stochastic policies, we can further
manipulate the expression we obtained. In particular, in this case

and thus, for �nite ,

While this can be used as the basis of evaluating (or approximating) gradient, it may be
worthwhile to point out an alternate form which is available when . In this case,
using the chain rule we get

Using this in  we get

which has the pleasant property that it takes the form of an expected value over the
actions of the score function of the policy map correlated with the action-value function.

Before moving on it is worth pointing out that an equivalent expression is obtained if 
 above is shifted by an arbitrary constant which may depend on  or  but not .

Indeed, since , di�erentiating both sides with respect to  gives 
. Hence, we also have
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This may have signi�cance when using simulation to evaluate derivatives: One may
attempt to use an appropriate “bias” term to reduce the variance of the estimate of the
gradient. Before discussing simulation any further, it may be also worthwhile to discuss
what happens when the action-space is in�nite.

For countable in�nite action spaces, the only di�erence is that  may not always hold.
An easy su�cient condition for this to hold is that  is summable,
or equivalently,  is -summable/integrable.

For uncountably in�nite action spaces, this argument works with the minimal necessary
changes. In the most general case,  is a probability measure over  and its derivative
is a vector-valued measure. The formulae derived above (e.g., ) remain valid if we
replace the sum with an integral when  is given in the form of a density with respect
to some �xed measure  over :

In fact, this is a strictly more general form:  is a special case of  when  is set to the
counting measure over .

In the special case when  (a Dirac at ), in words, when we have a
deterministic policy map and  is di�erentiable with respect to , it is better to start from
the formula given in the theorem.

Indeed, in this case,
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which is known as the “deterministic policy gradient formula”.

The idea of gradient methods is to make small steps in the parameter space in the
direction of the gradient of an objective function that is to be maximized. In the context of
policy search, this works as follows: If  denotes the parameter vector in round ,

where for  di�erentiable,  is the “gradient” (transpose of derivative).
Above,  is a positive tuning parameter, called the “stepsize” of the update. The idea is
that the “gradient” points in the direction where the function is expected to grow. Indeed,
since by de�nition,

if ,

or

For any  su�ciently small so that the  term (in absolute value) is below , we
see that the right-hand side is positive, hence so is the left-hand side, as claimed. This
simple observation is the basis of a huge number of algorithmic variants. In the lack of
extra structure the best we can hope from a gradient method is that it will end up in the
vicinity of a stationary point. In the presence of extra structure (.e.g, concave function to
be maximized), convergence to a global maximum can be guaranteed.

In all cases the key to the success of gradient methods is the appropriate choice of the
stepsizes; these choices are based on a re�nement of the above simple argument that
shows that moving towards the direction of the gradient helps. There are also ways of
“speeding up” convergence; these “acceleration methods” use a re�ned iteration (two
iterates updated simultaneously) and can greatly speed up convergence. As there are
many excellent texts that describe various aspects of gradient methods which cover these
ideas, we will not delve into them any further, but I will rather give some pointers to this
literature in the endnotes.

Gradient methods

xi ∈ R
d i

xi+1 = xi + αi∇xJ(πx)|x=xi
,

f ∇xf = ( d
dx
f)⊤

αi

f(x′) = f(x) + f ′(x)(x′ − x) + o(∥x′ − x∥)

x′ = x + δ(f ′(x))⊤

f(x + δ(f ′(x))⊤) = f(x) + δ∥f ′(x)∥2
2 + o(|δ|) ,

f(x + δ(f ′(x))⊤) − f(x)

δ
= ∥f ′(x)∥2

2 + o(1) ,

δ o(1) ∥f ′(x)∥2
2
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The elephant in the room here is that the gradient of  is not readily available. The next
best thing then is to attempt to build an estimate  of . In the planning setting, the
question is whether one can get reasonable estimates of this gradient using a simulator.

Generally speaking there are two types of errors when construction an estimate of the
gradient: The one that is purely random, and the one that is not. De�ning , 

 measures the “bias” of the gradient estimate, while  is the
noise. Gradient methods with decreasing (or small) stepsizes naturally “average out” the
noise. The version of gradient methods that are able to do this are called stochastic
gradient methods. Naturally, these methods are slower when the noise is larger and in
general cannot converge faster than how fast the noise averages out. In particular, in
persistent noise (i.e., noise with nonvanishing variance), the best rate available for
stochastic gradient methods is . While this can be slower than what can be
achieved without noise, if the iteration cost is polynomial in the relevant quantities, the
total cost of achieving an  stationary point can be bounded by a polynomial in these
quantities and .

When the gradient estimates are biased, the bias will in general put a limit on how close a
gradient method can get to a stationary point. While generally a zero bias is preferred to a
nonzero bias, a nonzero bias which is positively aligned with the gradient (

) does not hurt (again, for small stepsizes). When there is no way to
guarantee that the bias is positively aligned with the gradient, one may get back into
control by making sure that the magnitude of the bias is small relative to the magnitude
of the gradient.

The next question is of course, how to estimate the gradient. For this many approaches
have been proposed in the literature. When a simulator is available, as in our case, a
straightforward approach is to start from the policy gradient theorem. Indeed, under mild
regularity conditions (e.g., if there are �nitely many states)  together with  gives

Now note that  is a probability measure over . Let  be an in�nite
sequence of state-action pairs obtained by simulating policy  starting from . In
particular,  and  for any . In addition, de�ne  to be
independent of each other and from the trajectory  and have a
geometric distribution with parameter . Then,

J

G ∇xJ(πx)

Gradient estimation

g(x) = E[G]

b(x) = ∇xJ(πx) − g(x) G − g(x)

O(1/√t)

ε > 0

1/ε2

⟨b(x), ∇xJ(πx)⟩ ≥ 0

(1) (8)

d

dx
J(πx) = ∫

S

~νπx
μ (ds)∫

A

πx(a|s)(
d

dx
logπx(a|s))(qπx(s, a) − b(s,x))λ(da) . (9)

(1 − γ)~νπx
μ S S0,A0,S1,A1, …

πx S0 ∼ μ

At ∼ πx(⋅|St) St+1 ∼ PAt
(St) t ≥ 0 T1,T2

S0,A0,S1,A1, …

1 − γ

( )

https://en.wikipedia.org/wiki/Geometric_distribution
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is an unbiased estimate of :

The argument to show this has partially be given earlier in Lecture 8. One can also show
that  has a �nite covariance matrix, as well as that the expected e�ort to obtain  is 

.

Given the hardness result presented in the previous lecture, there is no hope that gradient
methods or any other method will �nd the global optima of the objective function in
policy search in a policy-class agnostic manner. To guarantee computational e�ciency,
one then

Gradient ascent to �nd a good policy (“vanilla policy gradients”) is one possible approach
to take even if it faces these restrictions. In fact, gradient ascent in some cases will �nd a
globally optimal policy.

In particular, it has been long known that with small enough stepsizes gradient ascent
converges at a reasonable speed to a global optimum provided that two conditions hold:

An example when both of these conditions are met is the direct policy parameterization,
which does not allow any compression and is thus not helpful per se, but can serve as a
test-case to see how far policy gradient (PG) methods can be pushed.

In this case, the parameter vector  is  dimensional. By allowing “two-dimensional
index”, , that is, the parameters encode the action selection probabilities in a
direct manner. In this case, since the components of  represent probabilities, they need

G =
1

1 − γ

d

dx
logπx(AT1 |ST1) (

T2−1

∑
t=0

rAT1+t
(ST1+t) − b(ST1 ,x))

d
dx J(πx)

E[G] =
d

dx
J(πx) .

G G

O( 1
1−γ )

Vanilla policy gradients (PG) with some special policy
classes

either needs to give up on convergence to a global optima, or1

give up on generality, i.e., give up on that the method should work for any policy class
and/or policy parameterization.

2

The objective function  is smooth (its derivative is Lipschitz continuous);1 f

The objective function is gradient dominated, i.e., with some constants , , 
satis�es  for any .

2 c > 0 p ≥ 1 f

supx f(x) − f(x′) ≤ c∥f ′(x′)∥p
2 x′ ∈ R

d

θ SA

πθ(a|s) = θs,a

θ

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec8/
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to be nonnegative and the appropriate components needs to sum to one. Hence,  for
an appropriate set . Accordingly, one needs to change gradient ascent.

This is done as follows: When a proposed update moves the parameter vector outside of ,
the proposed updated parameter vector is “back-projected” to . For the projection there
are a number of reasonable options, such as choosing the point within  which is closest
to the proposed point in the standard Euclidean distance. With this modi�cation, gradient
ascent can be shown to converge at a reasonable speed in this case. This parallels the
methods that were developed for the tabular case (policy iteration, value iteration). In
fact, the algorithm can be seen as a “smoother”, incremental version of policy iteration,
which gradually adjusts the probabilities assigned to the individual actions. Using  to
denote the th policy, from the policy gradient theorem one gets

and

Thus, the probability of an action in a state is increased in proportion to the value of that
state.

That the action-value of action  at state  is multiplied with the discounted occupancy at 
 induced by using policy  started from  is a bit of a surprise. In particular, if a state is

inaccessible under policy , the corresponding probabilities will not be updated. In fact,
because this, the above iteration may get stuck at a suboptimal policy. The reader is
invited to construct an example when this happens. To prevent this, it turns out to be
su�cient if there is a constant  such that it holds that

where  is an optimal policy. Since  appears on both sides and  is unknown, this
condition does not look to helpful. However, if one chooses  to be positive everywhere,
the condition is clearly met. In any case, when  holds, gradient dominance and
smoothness can be both veri�ed, which in turn implies that the above update will
converge at a geometric speed, the geometric speed involves an instance dependent
constant which has no polynomial bound in terms of  and the size of the
state-action space. Needless to say this is quite unattractive.

Policy gradient methods can be sensitive to how policies are parameterized. For
illustration, consider still the “tabular case”, just now change the way the memoryless

θ ∈ Θ

Θ ⊂ [0, 1]SA

Θ

Θ

Θ

πi

i

~πi+1(a|s) = πi(a|s) + αi
~νπi
μ (s)qπi(s, a) ,

πi+1(⋅|s) = arg min
p∈M1(A)

∥p − πi+1(⋅|s)∥2, s ∈ S .

a s

s πi μ

πi

C > 0

~νπ∗

μ (s) ≥ Cμ(s) , for all s ∈ S , (10)

π∗ μ π∗

μ

(10)

Hγ = 1/(1 − γ)
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policies are represented. One possibility is to use the Boltzmann, also known as the
softmax representation. In this case  and

A straightforward calculation gives

and hence

where recall that  is the discounted state-occupancy measure over the state-action
pairs of policy  when the initial state distribution is . The di�erence in the bracket on
the right-hand side is known as the advantage of action  and, accordingly, the function

which is a function mapping state-action pairs to reals, is called the advantage function
underlying policy . To justify the terminology, note that policy iteration can be seen as
choosing in each state the action that maximizes the “advantage”. Thus, we expect that
we get a better policy if the “probability mass” in the action distribution is shifted
towards actions with a larger advantage. Note though that advantages (as de�ned above)
can also be negative and in fact if  is optimal, all actions have nonnegative advantages
only.

The gradient ascent rule prescribes that

where  denotes componentwise product. While this is similar to the previous update, now
the meaning of parameters is quite di�erent. In fact, just because a parameter is increased
does not necessarily mean that the probability of the corresponding action is increased:
This will only happen if the increase of this parameter exceeds that of the other
parameters “at the same state”. By slightly abusing notation with de�ning , we
have

θ ∈ R
S×A

πθ(a|s) =
exp(θs,a)

∑a′ exp(θs,a′)
, (s, a) ∈ S ×A .

∂

∂θs,a
logπθ(a

′|s′) = I(s = s′, a = a′) − πθ(a|s)I(s = s′)

∂

∂θ(s,a)
J(πθ) = ∑

s′

~νπθ
μ (s′)∑

a′

πθ(a
′|s)

∂

∂θs,a
logπθ(a

′|s′)qπθ(s′, a′)

= νπθ
μ (s, a) (qπθ(s, a) − vπθ(s)) ,

νπ
μ

π μ

a

a
π = qπ − vπ ,

π

π

θi+1 = θi + αiν
πθi
μ ∘ a

πθi ,

∘

πi = πθi

πi+1(a|s) ∝ πi(a|s) exp(αiν
πi
μ (s, a)a

πi(s, a)) . (11)
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Just like in the previous update rule, we also see the occupancy measure “weighting” the
update. This is again not necessarily helpful and if anything, again, speaks to the
arbitrariness of gradient methods. And while this does not entirely stop policy gradient to
�nd an optimal policy, and again, one can even show that the speed is geometric, though,
as before, the algorithm altogether fails to run in polynomial time in the relevant
quantities. For this theorem which we give without proof recall that .

Theorem (PG is slow with Boltzmann policies): There exists universal constants 
 such that for any , if  then one can �nd a discounted MDP

with  states and  actions, setting  to be the uniform distribution and initializing the
parameters so that  is the uniform random policy, softmax PG with a constant stepsize
of  takes at least

iterations.

As one expects that without any compression, the chosen planner should behave
reasonably, this rules out the “vanilla” version of policy gradient.

In fact, a quite unsatisfactory property of gradient ascent that the speed at which it
converges can greatly depend on the parameterization used. Thus, for the same policy
class, there are many possible “gradient directions”, depending on the parameterization
chosen. What is a gradient direction for one parameterization is not necessarily a gradient
direction for another one. But what is common about these directions that an
in�nitesimal step along them is guaranteed increase the objective. One can in fact take a
direction obtained with a parameterization and look at what direction it gives with
another parameterizations. To get some order, consider transforming all these directions
into the space that corresponds to the direct parameterization. It is not hard to see that all
possible directions that are within 90 degrees of the gradient direction with this
parameterization can be obtained by considering an appropriate parameterization.

More generally, regardless of parameterization, all directions within 90 degrees of the
gradient direction are ascent directions. This motivates changing the stepsize  from a

Hγ = 1/(1 − γ)

γ0, c,C > 0 γ0 < γ < 1 S > CH 6
γ

S 3 μ

π0

α > 0

c

α
S2Ω(Hγ)

Natural policy gradient (NPG) methods

αi



5/16/22, 11:22 PM 16. Policy gradients - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 12/17

scalar to a matrix . Clearly, to keep the angle between the original gradient direction 
and the transformed direction  below 90 degrees,  has to hold. For 
symmetric, this restricts the set of matrix “stepsizes” to the set of positive de�nite
matrices (still, a large set).

There are many ways to choose a matrix stepsize. Newton’s method is to choose it so that
the direction is the “best” if the function is replaced by its local quadratic approximation.
This provably helps to reduce the number of iterations when the objective function is “ill-
conditioned”, though all matrix stepsize methods incur additional cost per each iteration,
which will often o�set the gains.

Another idea, which comes from statistical problems where one often works with
distributions is to �nd the direction of update which coincides with the direction one
would obtain if one used the steepest descent direction directly in the space of
distributions where distances are measured with respect to relative entropy. In some
cases, this approach, which was coined the “natural gradient” approach, has been shown
to give better results, though the evidence is purely empirical.

As it turns out, the matrix stepsize to be used with this approach is the (pseudo)inverse of
the so-called Fischer information matrix. In our context, for every state, we have
distributions over the actions. Fixing a state , the Fischer information matrix becomes

To get the “information rate” over the states, one can sum these matrices up, weighted by
the discounted state occupancy measure underlying  and  to get

The update rule then takes the form

where for a square matrix ,  denotes the pseudoinverse of . Interestingly, the update
direction can be obtained without calculating  and inverting it:

Proposition: We have

Ai g

Aig g⊤Aig ≥ 0 Ai

s

Fx(s) =
d

dx
logπx(⋅|s)

d

dx
logπx(⋅|s)⊤ .

μ πx

F(x) := νπx
μ Fx .

xi+1 = xi + αiF(xi)
†∇xJ(πx) ,

A A† A

F

(1 − γ)F(x)†∇xJ(πx) = arg min
w∈Rd

νπx
μ (w⊤∇x logπx(⋅|⋅) − a

πx)
2

,

https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
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where  and  chooses the minimum -norm solution if multiple
minimizers exist.

Proof: Just recall the formula that gives the solution to a least-squares problem. The
details are left to the reader. 

As an example of how things look like consider the case when  takes the form of a
Boltzmann policy:

where  is a feature-map. Then, assuming that there are �nitely many
actions,

Then, the natural policy gradient update takes the form

where

In the tabular case , no compression),

and thus

Note that this update rule eliminates the term  term that we have previously seen
(cf. ).

NPG is known to enjoy a reasonable speed of convergence, which gives altogether
polynomial planning time. This is promising. No similar results are available for the
nontabular case.

Note that if we (arbitrarily) change the de�nition of  by replacing  above with  and 
 with , we get what has been called in the literature Q-NPG:

a
πx = qπx − vπx arg min ∥ ⋅ ∥2

■

πx

πx(a|s) ∝ exp(x⊤ϕ(s, a)) ,

ϕ : S ×A → R
d

∇x logπx(a|s) = ϕ(s, a) −∑
a′

πx(a′|s)ϕ(s, a′)

ψx(s,a)

.



xi+1 = xi + αiwi ,

wi = arg min
w∈Rd

νπx
μ (w⊤ψx − a

πxi)
2

(d = SA

wi(s, a) = a
πxi(s, a)

πi+1(a|s) ∝ πi(a|s) exp(αia
πi(s, a)) = πi(a|s) exp(αiq

πi(s, a)) .

νπi
μ (s, a)

(11)

wi ψx ϕ

aπx qπx
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Note that the only di�erence between Q-NPG and Politex is that in Politex one uses

where  is the measure obtained from solving the G-optimal design problem.

The price of not using  but using  in Q-NPG is that the approximation error in Q-NPG
becomes

where

gives a bound on how much the distribution  di�ers from that of obtained when the
optimal policy  is followed from . As was argued before, it is necessary that  is �nite
for policy gradient methods not to “get stuck” at local optima. However,  can be
arbitrarily large even for �nite state-action MDPs; an in fact it is the presence of  that
makes the policy gradient with the direct parameterization a slow algorithm.

In contrast, the same quantity in Politex is

Not only the uncontrolled constant  is removed, but the dependence on the planning
horizon is also improved. Other than these di�erences, the results available for Q-NPG
are similar to that of Politex and in fact the proof technique to obtain the results is also
the same.

For completeness, here is the proof of . For the proof recall that for a function 
,  is the unique linear operator (row vector, in the Euclidean case) that satis�es

Hence, it su�ces to show that

wi = arg min
w∈R

d
νπx
μ (w⊤ϕ − qπx)

2
.

wi = arg min
w∈Rd

ν̂(w⊤ϕ − qπx)
2

,

ν̂

ν̂ νπx
μ

Cε

(1 − γ)1.5

C =
d~νπ∗

μ

dμ
∞∥ ∥μ

π∗ μ C

C

C

√dε

1 − γ
.

C

The proof of the Calculus 101 result
(2) g : R

d → R

d
dx g(x0)

g(x) = g(x0) +
d

dx
g(x0)(x − x0) + o(∥x − x0∥) as x → x0 .
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To minimize clutter we will write  for  (and similarly we write 
 for ).

By de�nition we have

and

Putting these together we get

where the last equality follows if  as , i.e., if 
is continuous at .

That the result also holds under the assumption that  is continuous at 
follows from a symmetric argument. 

While policy gradient methods remain extremely popular and the idea of directly
searching in the set of policies is attractive, at the moment it appears that they not only
lack theoretical support, but the theoretical results suggest that it is hard to �nd any
setting where policy gradient methods would be provably competitive with alternatives.
At minimum, they need careful choices of policy parameterizations and even in that case
the update rule may need to be changed to guarantee e�ciency and e�ectiveness, as we
have seen above. As an approach to algorithm design their main advantage is their
generality and a strong support through various software libraries. Compared to vanilla
“dynamic programming” methods they make generally smaller, more incremental
changes to the policies, which seems useful. However, this is also achieved by methods

f(x′,x′) = f(x,x) + (
∂

∂u
f(u,x)|u=x +

∂

∂v
f(x, v)|v=x)(x′ − x) + o(∥x′ − x∥) .

∂
∂u f(x′,x) ∂

∂u f(u,x)|u=x′

∂
∂v f(x,x′) ∂

∂v f(x, v)|v=x′

f(x′,x′) = f(x′,x) +
∂

∂v
f(x′,x)(x′ − x) + o(∥x′ − x∥)

f(x′,x) = f(x,x) +
∂

∂u
f(x,x)(x′ − x) + o(∥x′ − x∥) .

f(x′,x′) = f(x,x) + (
∂

∂v
f(x′,x) +

∂

∂u
f(x,x))(x′ − x) + o(∥x′ − x∥)

= f(x,x) + (
∂

∂v
f(x,x) +

∂

∂u
f(x,x))(x′ − x)

+(
∂

∂v
f(x′,x) −

∂

∂v
f(x,x))(x′ − x) + o(∥x′ − x∥)

= f(x,x) + (
∂

∂v
f(x,x) +

∂

∂u
f(x,x))(x′ − x) + o(∥x′ − x∥) .

∂
∂v f(x′,x) − ∂

∂v f(x,x) = o(1) x′ → x x′ ↦ ∂
∂v f(x′,x)

x′ = x

x′ ↦ ∂
∂u f(x,x′) x′ = x

■

Summary
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like Politex, which is derived using a “bound minimization” approach. While this may
seem more ad hoc than following gradients, in fact, one may argue that following
gradients is more ad hoc as it fails to guarantee good performance. However, perhaps the
most important point here is that one should not care too much about how a method is
derived, or what “interpretation” it may have (is Politex a gradient algorithm? does this
matter?). What matters is the outcome: In this case how the methods perform. It is thus
wise to learn about all possible ways of designing algorithms, especially since there is
much room for improving the performance of current algorithms.

Philip Thomas (2014, see citation below) takes a careful look at the claims surrounding
natural gradient descent. One claim that is often heard is that natural gradient descent
will speed up convergence. This is usually back up by giving a demonstration (e.g.,
Kakade, 2002, or Amari, 1998). However, it is far from clear whether this speedup will
necessarily happen. As it turns out, this is far from being true. In fact, natural policy
gradient can cause divergence even where following the normal gradient is guaranteed to
converge to a global optimum. An example of this is given in Section 6.5 of the paper of
Thomas (2014).
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