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RL Theory

Planning in MDPs / 4. Policy Iteration

In this lecture we

This latter bound is to be contrasted with what we found out about the runtime of value-
iteration in the previous lecture. In particular, value-iteration’s runtime bound that we
discovered previously grew linearly with  where  was the targeted suboptimality level.
This may appear as a big di�erence in the limit of . Is this di�erence real? Is value-
iteration truly inferior to policy-iteration? We will discuss these at the end of the lecture.

Policy iteration starts with an arbitrary deterministic (memoryless) policy . Then, in step 
, the following computations are done:

How do we calculate ? Recall that , for an arbitrary memoryless policy , is the �xed-point
of the operator : . Also, recall that  for any . Thus, 

 is just a linear equation in , which we can solve explicitly. In the context of policy
iteration from this we get

The careful reader will think of why the inverse of the matrix  exist. There are many
tools we have at this stage to argue that the above is well-de�ned. One approach is to note that 

 holds whenever all eigenvalues of the square matrix  lie strictly within

the unit circle on the complex plain (see homework 0). This is known as the von Neumann series
expansion of , but these big words just hide that at the heart of this is the elementary
geometric series formula, , which holds for all , as we have all

learned in high school.

4. Policy Iteration

formally de�ne policy iteration and1

show that with  elementary arithmetic operations, it produces an

optimal policy

2 ~
O(poly(S, A, 1

1−γ
))

log(1/δ)) δ

δ → 0

Policy Iteration
π0

k = 0, 1, 2, …

calculate , and1 vπk

obtain , another deterministic memoryless policy, by “greedifying” w.r.t. .2 πk+1 vπk

vπk vπ π

Tπ vπ = Tπvπ Tπv = rπ + γPπv v ∈ R
S

vπ = Tπvπ vπ

vπk = (I − γPπk
)−1rπk

. (1)
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(I − A)−1 = ∑i≥0 Ai A

I − A

1/(1 − x) = ∑i≥0 xi |x| < 1
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Based on Eq.  we see that  can be obtained with at most  (and in fact with
at most  ) arithmetic and logic operations. In particular, the cost of computing  is 

 (since  is deterministic), the cost of computing , with the table representation of the
MDP and “random access” to the tables, is . Note that all these are independent of the
number of actions.

Computationally, the “greedi�cation step” above just means to compute for each state  an
action that maximizes the one-step Bellman lookahead values w.r.t. . Writing this out, we see
that we need to solve the maximization problem

and store the result as the action that will be selected by . Since we agreed that all these
policies will be deterministic, we may remove a bit of the storage redundancy, if we allow the
algorithm just to store the action chosen by  at every state (and eventually produce the
output in this form), rather than requiring it to produce a probability vector for each state, which
would have a lot of redundant zero entries in it. Correspondingly, we will further abuse notation
and will allow deterministic memoryless policies to be identi�ed with  maps. Thus, 

.

Given , a vector of length , the cost of evaluating the argument of the maximum is .
Thus, the cost of computing the maximum is : This is where the number of actions
appears (in these steps) in the runtime.

Our main result will be a theorem that states that after  iterations, the policy
computed by policy iteration is necessarily optimal (and not only approximately optimal!). The
proof of this result hinges up on two key observations:

The �rst result follows from comparing policy iteration with value iteration. We know that value
iteration converges at a geometric rate regardless of its initialization. Hence, if we can prove that

 then we will be done. In the so-called “policy improvement
lemma”, we will in fact prove a result that implies

which is stronger than the geometric convergence result.

(1) vπk O(S3)
O(S2.373…) rπk

O(S) πk Pπk

O(S2)

s ∈ S

vπk

max
a∈A

ra(s) + γ⟨Pa(s), vπk⟩

πk+1

πk+1

S → A

πk+1 : S → A

vπk S O(S)
O(SA)

~
O(SA/(1 − γ))

Policy iteration converges geometrically1

After every  iterations, it eliminates at least one suboptimal action at some state.2 Hγ,1

∥vπk − v∗∥∞ ≤ ∥T kvπ0 − v∗∥∞

T kvπ0 ≤ vπk , k = 0, 1, 2, … (2)

https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations#Matrix_algebra
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Lemma (Geometric Progress Lemma): Let  be memoryless policies such that  is greedy
w.r.t. . Then,

Proof: By de�nition, . We also have . Chaining these, we get

We prove by induction on  that

From this, the result will follow by taking  of both sides.

The base case of induction  has just been established. For the general case, assume that the
required inequality holds for . We show that it also holds for . For this, apply  on
both sides of Eq. . Since  is monotone, we get

Chaining this with Eq. , we get

�nishing the inductive step, and hence the proof. 

The lemma shows that the value functions are monotonically increasing. Applying this lemma 
times starting with  gives Eq.  and this implies the promised result:

Corollary (Geometric convergence): Let  be the sequence of policies produced by policy
iteration. Then, for any ,

Proof: By ,

Hence,

π, π′ π′

vπ

vπ ≤ Tvπ ≤ vπ′
.

Tvπ = Tπ′vπ vπ = Tπvπ ≤ Tvπ

vπ ≤ Tvπ = Tπ′vπ . (3)

i ≥ 1

vπ ≤ Tvπ ≤ T i
π′v

π . (4)

i → ∞

i = 1
i ≥ 1 i + 1 Tπ′

(4) Tπ′

Tπ′vπ ≤ T i+1
π′ vπ .

(3)

vπ ≤ Tvπ = Tπ′vπ ≤ T i+1
π′ vπ ,

■

k

π = π0 (2)

{πk}k≥0

k ≥ 0

∥vπk − v∗∥∞ ≤ γ k∥vπ0 − v∗∥∞ . (5)

(2)

T kvπ0 ≤ vπk ≤ v∗ , k = 0, 1, 2, … .
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Taking componentwise absolute values and then the maximum over the states, we get that

which is the desired statement. In the equality above we used the Fundamental Theorem and in
the last inequality we used that  is a -contraction. 

We now set out to �nish by showing the “strict progress lemma”. The lemma uses the corollary
we just obtained, but it will also require some truly novel ideas.

Lemma (Strict progress lemma): Fix an arbitrary suboptimal memoryless policy  and let 
 be the sequence of policies produced by policy iteration. Then, there exists a state 

 such that for any ,

The lemma shows that after every  iterations, policy iteration eliminates one

action-choice at one state until there remains no suboptimal action to be eliminated. This can
only be continued for at most  times: In every state, at least one action must be optimal.
As an immediate corollary of the progress lemma, we get the main result of this lecture:

Theorem (Runtime Bound for Policy Iteration): Consider a �nite, discounted MDP with rewards
in . Let  be as in the progress lemma,  the sequence of policies obtained by policy
iteration starting from an arbitrary initial policy . Then, after at most 

 iterations, the policy  produced by policy iteration is optimal: 

. In particular, policy iteration computes an optimal policy with at most 

arithmetic and logic operations.

It remains to prove the progress lemma. We start with an identity which will be useful beyond
the proof of this lemma. The identity is called the value di�erence identity and it gives us an
alternate form of the di�erence of values functions of two memoryless policies. Let  be two

memoryless policies. Recalling that , by algebra, we �nd that

v∗ − vπk ≤ v∗ − T kvπ0 , k = 0, 1, 2, … .

∥v∗ − vπk∥∞ ≤ ∥v∗ − T kvπ0∥∞ = ∥T kv∗ − T kvπ0∥∞ ≤ γ k∥v∗ − vπ0∥∞ ,

T γ ■

π0

{πk}k≥0

s0 ∈ S k ≥ k∗ := ⌈Hγ,1⌉ + 1

πk(s0) ≠ π0(s0) .

k∗ =
~
O( 1

1−γ
)

SA − S

[0, 1] k∗ {πk}k≥0

π0

k = k∗(SA − S) =
~
O( SA−S

1−γ
) πk

vπk = v∗ ~
O( S4A+S3A2

1−γ
)

π, π′

vπ′
= (I − γPπ′)−1rπ′
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Introducing

which we can think of the “advantage” of  relative to , we get the following lemma:

Lemma (Value Di�erence Identity): For all memoryless policies ,

Of course, a symmetric relationship also holds.

With this, we are now ready to prove the progress lemma. Note that if  is an optimal
memoryless policy then for any other memoryless policy , . In fact, the reverse
statement also holds: if the above holds for any ,  must be optimal. This makes it 
an ideal target to track the progress that policy iteration makes. We expect this to start at a high
value and decrease as  increases. Note, in particular, that if

for some state  then, by algebra,

which means that . Hence, the idea of the proof is to show that Eq.  holds for
any .

Proof (of the progress lemma): Fix  and  such that  is not optimal. Let  be an
arbitrary memoryless optimal policy. Then, for policy , by the value di�erence identity and
since  is optimal,

where the last inequality follows because  is stochastic and hence monotone and because 
. Our goal is to relate the right-hand side to . Since Eq.  allows us to

relate the right-hand side to , and the value di�erence identity then lets us bring in 
, preparing to use Eq. , we �rst take the max-norm of both sides of the above

vπ′
− vπ = (I − γPπ′)−1[rπ′ − (I − γPπ′)vπ]

= (I − γPπ′)−1[Tπ′vπ − vπ] .

g(π′, π) = Tπ′vπ − vπ ,

π′ π

π, π′

vπ′

− vπ = (I − γPπ′)−1g(π′, π) .

π∗

π g(π, π∗) ≤ 0
π π∗ −g(πk, π∗)

k

−g(πk, π∗)(s0) < −g(π0, π∗)(s0) (6)

s0 ∈ S

rπk(s0)(s0) + γ⟨Pπk(s0), v∗⟩ > rπ0(s0)(s0) + γ⟨Pπ0(s0), v∗⟩

πk(s0) ≠ π0(s0) (6)
k ≥ k∗

k ≥ 0 π0 π0 π∗

πk

π∗

−g(πk, π∗) = (I − γPπk
)(v∗ − vπk) = (v∗ − vπk) − γPπk

(v∗ − vπk) ≤ v∗ − vπk ,

Pπk

v∗ − vπk ≥ 0 −g(π0, π∗) (5)
v∗ − vπ0

−g(π0, π∗) (5)
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inequality, noting that this keeps the inequality by the de�nition of the max-norm. Then, as
planned, we use Eq.  and the value di�erence identity to get

where the last inequality follows by noting that  and thus from the

triangle inequality and because  is a max-norm non-expansion, 
 holds for any .

Now, de�ne  to be the state that satis�es . Since  is
�nite, this exists. Noting that , we get from Eq.  that

Now when , . Since ,  and thus,

which is Eq. , and thus, by our earlier discussion, . The proof is done because
this holds for any . 

Our earlier result on the runtime of value iteration involves a  term which grows
without bounds as , the required precision level, decreases towards zero. However, at this stage
it is not clear whether this extra term is the result of a loose analysis or whether it is a property
of value-iteration.

Can value iteration be guaranteed to �nd an optimal policy with computation which is
polynomial in ,  and the planning horizon , assuming all value functions takes

values in ?

Calling any algorithm that achieves the above strongly polynomial, we see that with this
terminology we can say that policy iteration is strongly polynomial. Note that in the above
de�nition rather than assuming that the rewards lie in , we use the assumption that the
value functions for all policies take values in . This is a weaker assumption, but
checking our proof for the runtime on policy iteration we see that it only needed this
assumption.

(5)

∥g(πk, π∗)∥∞ ≤ ∥v∗ − vπk∥∞ ≤ γ k∥v∗ − vπ0∥∞ = γ k∥(I − γPπ0
)−1(−g(π0, π∗))∥∞

≤
γ k

1 − γ
∥g(π0, π∗)∥∞ , (7)

(I − γPπ0
)−1 = ∑i≥0 γ iP i

π0

Pπ0

∥(I − γPπ0)
−1x∥∞ ≤ 1

1−γ
∥x∥∞ x ∈ R

S

s0 ∈ S −g(π0, π∗)(s0) = ∥g(π0, π∗)(s0)∥∞ S

0 ≤ −g(πk, π∗)(s0) ≤ ∥g(πk, π∗)∥∞ (7)

−g(πk, π∗)(s0) ≤ ∥g(πk, π∗)∥∞ ≤
γ k

1 − γ
(−g(π0, π∗)(s0)).

k ≥ k∗ γ k

1−γ
< 1 π0 ≠ π∗ 0 < ∥g(π0, π∗)∥∞ = −g(π0, π∗)(s0)

−g(πk, π∗)(s0) ≤
γ k

1 − γ
(−g(π0, π∗)(s0)) < −g(π0, π∗)(s0) ,

(6) πk(s0) ≠ π0(s0)
k ≥ k∗

■

Is Value Iteration Inferior?
log(1/δ)

δ

S A 1/(1 − γ)
[0, 1/(1 − γ)]

[0, 1]
[0, 1/(1 − γ)]



5/16/22, 11:21 PM 4. Policy Iteration - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec4/ 7/9

However, as it turns out, value-iteration is not strongly polynomial:

Proposition: There exists a family of MDPs with deterministic transitions, three states, two
actions and value functions for all policies taking values in  such that the worst-
case iteration complexity of value iteration over this set of MDPs to �nd an optimal policy is
in�nite.

Here, iteration complexity means the smallest number of iterations  after which , as
computed by value iteration, is optimal, for any of the MDPs in the family. Of course, an in�nite
iteration complexity also implies an in�nite runtime complexity.

Proof: The MDP is depicted in the following �gure:

The circles show the states with their names in the circles, the arrows with labels  and  show
the transitions between the states as a result of using the actions. The label  shows how
much reward is incurred along a transition. On the �gure,  is not a return, but a free parameter,
which is chosen in the interval  and which will govern the iteration complexity of
value iteration.

We consider value iteration initialized at . It is easy to see that the unique optimal action
at  is , incurring a value of  at this state. It is also easy to see that 

. We will show that value iteration can “hug” action  at state  inde�nitely
as  approaches  from below. For this, just note that  and that 

 for any . Then, a little calculation shows that  as long

as . If we want value iteration to spend more than  iterations, all we have to do is to

choose . 

It is instructive to note how policy iteration avoids the blow-up of the iteration-counts. This
result shows that value-iteration, as far as we are concerned with calculating an optimal policy,
exactly, is clearly inferior to policy iteration. However, we also had our earlier positive result for
value iteration that showed that the cost of achieving -suboptimal policies is at most 
(and polynomial in the remaining quantities).

[0, 1/(1 − γ)]

k πk

a0 a1

r = ⋅
R

[0, γ/(1 − γ)]

v0 = 0

s1 a0 γ/(1 − γ)
π0(s1) = a1 ≠ a0 a1 s0

R γ/(1 − γ) vk(s0) = 0
vk(s2) = γ

1−γ
(1 − γ k) k ≥ 0 πk(s1) = a1

R > vk(s2) k0

R =
v∗(s2)+vk0(s2)

2 < γ/(1 − γ) ■

δ log(1/δ)
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What does this all mean? Should we really care about that value-iteration is not �nite for exact
computation? We have many reasons to not to care much about exact calculations. In the end, we
will do sampling, learning, all of which make exact calculations impossible. Also, recall that our
models are just models: The models themselves introduce errors. Why would we want to care
about exact optimality? In summary:

Exact optimality is nice to have, but approximate computations with runtime growing mildly
with the required precision should be almost equally acceptable.

Yet, it remains intriguing to think of how policy iteration can just “snap” into the right solution
and how by changing just a few lines of code, a drastic improvement in runtime may be possible.
We will keep returning to the question of whether an algorithm has some provable advantage
over some others. When this can be shown, it is a true win: We do not need to bother with the
inferior algorithm anymore. While this is great, remember that all this depends on how the
problems are de�ned. As we have seen before, and we will see many more times, changing the
problem de�nition can drastically change the landscape of what works and what does not work.
And who knows, some algorithm may be inferior in some context, and be superior in some other.

The �rst result that showed that after  arithmetic and logic operations one can

compute an optimal policy is due to Yinyu Ye (2011). This was a real breakthrough of the time.
The theorem we proved is by Bruno Scherrer (2016) and we followed closely his proof. This proof
is much simpler than the �rst one by Yinyu Ye, though the main ideas can be traced back to the
proof of Yinyu Ye.

The example that shows that value iteration is not strongly polynomial is due to Eugene A.
Feinberg, Je�erson Huang and Bruno Scherrer (2014).

More often than one may imagine, two actions may tie for the maximum in the above problem.
Which one to use in this case? As it turns out, it matters only if we want to build a stopping
condition for the algorithm that stops the �rst time it detects that . This stopping
condition takes  operations, so is quite cheap. If we use this stopping condition, we better
make sure that when there are ties, the algorithm resolves them in a systematic fashion,
meaning that it has a �xed preference relation over the actions that it respects in case of ties.
Otherwise, in the case when there are two optimal actions at some state ,  is an optimal
policy,  may choose the optimal action that  did not choose, and then  could choose

Notes

The runtime bound on policy iteration
poly(S, A, 1

1−γ
)

Runtime of value iteration

Ties and stopping

πk+1 = πk

O(S)

s πk

πk+1 πk πk+2
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the same action as  at the same state, etc. and the stopping condition would fail to detect that
all these policies are optimal.

Alternatively to resolving ties systematically one may simply change the stopping condition to
checking whether . The reader is invited to check that this would work. “In practice”,
though, this may be problematic if  and  are computed with �nite precision and
somehow the approximation errors that arise in this calculation lead to di�erent answers. Can
this happen at all? It can! We may have  (with in�nite precision), while 
and . And so with �nite precision calculations, there is no guarantee that
we get the same outcomes in the two cases! The only guarantee that we get with �nite precision
calculations is that with identical inputs, the outputs are identical.

An easy way out, of course, is just to use the theorem above and stop after the number of
iterations is su�ciently large. However, this may be, needlessly, wasteful.
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vπk vπk+1

vπk = vπk+1 rπk
≠ rπk+1

I − γPπk
≠ I − γPπk+1
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