
5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 1/17

RL Theory

Planning in MDPs / 6. online planning - Part II.

In the previous lecture online planning was introduced. The main idea is to amortize the cost of
planning by asking a planner to produce an action to be taken at a particular state so that the policy
induced by repeatedly calling the planner at the states just visited and then using the action returned by
the planner is near-optimal. We have seen that with this, the cost of planning can be made independent
of the size of the state space – at least for deterministic MDPs. For this, one can use just a recursive
implementation of value iteration, which, for convenience, we wrote using action-value functions and
the corresponding Bellman optimality operator, , de�ned by

(in the previous lecture we used to denote this operator, but to reduce clutter from now on, we will
drop the tilde).

We have also seen that no procedure can do signi�cantly better in terms of its runtime (or query cost)
than this simple recursive procedure. In this lecture we show that these ideas also extend to the
stochastic case.

Assume now that the MDP is stochastic. Recall the pseudocode of the recursive form of value iteration
from the last lecture that computes :

1. define q(k,s):

2. if k = 0 return [0 for a in A] # base case

3. return [r(s,a) + gamma * sum([P(s,a,s') * max(q(k-1,s')) for s' in S]) for a in A]

4. end

Obviously, the size of the state space creeps in because in line 3 we need to calculate an expected value
over the next state distribution at . As noted beforehand, in deterministic systems when a
simulator is available, the sum over the next-states can be replaced with a single simulator call. But the
reader may remember from Probability 101 that sampling allows one to approximate expected values,
where the error of approximation is independent of the cardinality of the set over which we average
the values. Here, this set is , the state space. This is extremely lucky!

To quantify the size of these errors, we recall Hoe�ding’s inequality:

6. online planning - Part II.

T

Tq(s, a) = ra(s) + γ⟨Pa(s), Mq⟩ .

~
T

Sampling May Save the Day?

(T k
0)(s, ⋅)

(s, a)

S

https://rltheory.github.io/
https://rltheory.github.io/w2021-lecture-notes/planning-in-mdps

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 2/17

Lemma (Hoe�ding’s Inequality): Given independent, identically distributed (i.i.d.) random
variables that take values in the interval, for any , with probability at least it
holds that

Letting for some state-action pair and , by this result,
for any , with probability ,

This suggests the following approach: For each state action pair draw and
store it in a list . Then, whenever for some function we need the value of , just use
the sample average

Plugging this approximation into our previous pseudocode gives the following new code:

1. define q(k,s):

2. if k = 0 return [0 for a in A] # base case

3. return [r(s,a) + gamma/m * sum([max(q(k-1,s')) for s' in C(s,a)]) for a in A]

4. end

The total runtime of this function is now . What is important is that this will give us a
compute time independent of the size of the state space as long as we can show that can be set
independently of while meeting our target for the suboptimality of the induced policy.

This pseudocode sweeps under the rug on who creates the lists and when? A simple and
e�ective approach is to use “lazy evaluation” (or memoization): Create at the �rst time it is
needed (and do not create it otherwise). An alternative to the approach we follow here is to avoid
storing these lists and just create them on demand. Both procedures are valid, but we will stick to the
procedure that creates the lists only once and will comment on the other approach at the end in the
notes.

m

[0, 1] 0 ≤ ζ < 1 1 − ζ

1

m

m

∑
i=1

Xi − E[X1] ≤ √ log 2
ζ

2m
.∣ ∣S ′

1, … , S ′
m

i.i.d.
∼ Pa(s) (s, a) v : S → [0, vmax]

0 ≤ ζ < 1 1 − ζ

1

m

m

∑
i=1

v(S ′
i) − ⟨Pa(s), v⟩ ≤ vmax

√ log 2
ζ

2m
.∣ ∣ (1)

(s, a) S ′
1, … , S ′

m
i.i.d.
∼ Pa(s)

C(s, a) v ⟨Pa(s), v⟩

1

m
∑

s′∈C(s,a)

v(s′) .

O((mA)k+1)
m

S

C(s, a)
C(s, a)

Good Action-Value Approximations Su�ce

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 3/17

As a �rst step towards understanding the strength and weaknesses of this approach, let us de�ne

 by

With the help of this de�nition, when called with state , the planner computes

The conciseness of this formulae, if anything, must please everyone!

Let us now turn to the question of whether the policy induced by this planners is a good one. We start
with a lemma that parallels our earlier result that bounded the suboptimality of a policy that is greedy
w.r.t. a function over the states as a function of how well the function approximates the optimal value
function. To state the lemma, we need the analog of optimal value functions but with action values.

De�ne

We call this function the optimal action-value function (in our MDP). The function is easily seen
to satisfy and thus also . The promised lemma is as follows:

Lemma (Policy error bound - I.): Let be a memoryless policy and choose a function
and . Then, the following hold:

For the proof, which is partially left to the reader, we need to introduce a bit more notation. In
particular, for a memoryless policy, de�ne the operator :

T̂ : R
S×A → R

S×A

(T̂ q)(s, a) = ra(s) +
γ

m
∑

s′∈C(s,a)

max
a′∈A

q(s′, a′) .

s = s0

A = arg max
a∈A

(T̂ H
0)(s0, a)

QH(s0,a)

,

π̂

Suboptimality of -optimizing policiesϵ

q∗(s, a) = ra(s) + γ⟨Pa(s), v∗⟩ .

q∗ q∗

Mq∗ = v∗ q∗ = Tq∗

π q : S × A → R

ϵ ≥ 0

If is -optimizing in the sense that holds for every state
then is suboptimal:

1 π ϵ ∑a π(a|s)q∗(s, a) ≥ v∗(s) − ϵ s ∈ S

π ϵ/(1 − γ) vπ ≥ v∗ − ϵ
1−γ

1 .

If is greedy with respect to then is -optimizing with and thus2 π q π 2ϵ ϵ = ∥q − q∗∥∞

vπ ≥ v∗ −
2∥q − q∗∥∞

1 − γ
1 .

Mπ : R
S×A → R

S

(Mπq)(s) = ∑
a∈A

π(a|s)q(s, a) , (q ∈ R
S×A, s ∈ S).

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 4/17

With the help of this operator the condition that is greedy with respect to can be written as

Further, the second claim of the lemma can be stated in the more concise form .

For future reference, we will also �nd it useful to de�ne :

Note that here we abused notation as has already been used to denote the operator that maps
functions of the states to functions of the state. From the context, the meaning of will always be
clear.

Proof: The �rst part of the proof is standard and is left to the reader. For the second part note that

Then use the �rst part.

There are two issues that need to be taken care of. One is that the planner is randomizing when
computing the values . What happens when the random next states obtained from the
simulator are not “representative”? We cannot expect the outcome of this randomized computation to
be precise! Indeed, the best we can expect is that the outcome is “accurate” with some probability,
hopefully close to one. In fact, from Hoe�ding’s inequality, we see that if we want to achieve small
errors in the computation for some target probability, we need to increase the sample size. But
Hoe�ding’s inequality, in all cases, allows errors which are uncontrolled on some failure event.

All in all, the best we can hope for is that with each call, is a good approximation to
outside of some “failure event” whose probability we will control separately. Let us say the
probability of is at most :

Here, denotes the probability measure induced by the interaction of the planner and the MDP
simulator on an appropriate probability space. We will choose so that on , the complementer of
(a “good” event), it holds that

Then, on ,

That is, on the good event , the action returned by the planner is optimizing at state .

Let denote the probability that action returned by the planner is : .
Then,

π q

Mπq = Mq .

Mπq∗ ≥ v∗ − 2ϵ1

Pπ : R
S×A → R

S×A

Pπ = PMπ .

Pπ

Pπ

Mπq∗ ≥ Mπ(q − ϵ1) = Mπq − ϵ1 = Mq − ϵ1 ≥ M(q∗ − ϵ1) − ϵ1 = Mq∗ − 2ϵ1 = v∗ − 2ϵ1 .

■

Suboptimality of almost -optimizing policiesϵ

QH(s0, ⋅)

QH(s0, ⋅) q∗(s0, ⋅)
F

F ζ

Ps0(F) ≤ ζ .

Ps0

F F
c

F

δH = ∥QH(s0, ⋅) − q∗(s0, ⋅)∥∞ ≤ ϵ . (2)

F c

q∗(s0, A) ≥ QH(s0, A) − ϵ = max
a

QH(s0, a) − ϵ ≥ max
a

(q∗(s0, a) − ϵ) − ϵ = v∗(s0) − 2ϵ .

F
c A 2ϵ s0

π̂(a|s0) A a π̂(a|s0) = Ps0(A = a)

∑

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 5/17

In words, with probability at least , chooses -optimizing actions: The policy is almost -
optimizing. While this is not as good as always choosing -optimizing actions, we expect that as

 the di�erence in performance between and a policy that always chooses -optimizing actions
disappears because performance is expected to depend on action probabilities in a continuous fashion.
The next lemma makes this precise:

Lemma (Policy error bound II): Let , be a memoryless policy that selects -optimizing
actions with probability at least in each state. Then,

Proof: By Part 1 of the previous lemma, it su�ces to show that is -optimizing in every
state. This follows from algebra and is left to the reader.

What remains is to show that with high probability, the error , de�ned in is small. Intuitively,

. To �rm up this intuition, we may note that for any �xed function over the state-
action pairs such that and for any �xed , by Eq. and the choice of the

sets , with probability ,

where, for brevity, we introduced in the above formula.

∑
a

π̂(a|s0)I(q∗(s0, a) ≥ v∗(s0) − 2ϵ)

= Ps0(q∗(s0, A) ≥ v∗(s0) − 2ϵ)
= Ps0(q∗(s0, A) ≥ v∗(s0) − 2ϵ,F c) + Ps0(q∗(s0, A) ≥ v∗(s0) − 2ϵ,F)
≥ Ps0(q∗(s0, A) ≥ v∗(s0) − 2ϵ,F c)
= Ps0(F

c)
≥ 1 − ζ .

1 − ζ π̂ 2ϵ 2ϵ

2ϵ

ζ → 0 π̂ 2ϵ

ζ ∈ [0, 1] π ϵ

1 − ζ

vπ ≥ v∗ −
ϵ + 2ζ∥q∗∥∞

1 − γ
1 .

π ϵ + 2ζ∥q∗∥∞

■

Error control
δH (2)

T̂ ≈ T q ∈ R
S×A

∥q∥∞ ≤ 1
1−γ

(s, a) ∈ S × A (1)

C(s, a) 1 − ζ

|T̂ q(s, a) − Tq(s, a)| = γ
1

m
∑

s′∈C(s,a)

v(s′) − ⟨Pa(s), v⟩ ≤ γ∥q∥∞
√ log 2

ζ

2m

≤
γ

1 − γ
√ log 2

ζ

2m
=: Δ(ζ, m),∣ ∣ (3)

v = Mq

Union bounds

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6#lem:averror

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 6/17

So we know that for any �xed state-action pair , outside of a low probability event, is
close to . But can we conclude from this that, outside of some low probability event,

 is close to everywhere?

To answer this question, it will be easier to turn it around and just try to come up with some event that,

on the one hand, has low probability, while, in the other hand, outside of this event, is close
to regardless of .

Denoting by the event when is not close to , i.e.,

it is clear that if then outside of , none of holds and hence

But how large can the probability of be? For this, recall the following elementary result, which follows
directly from the properties of measures:

Lemma (Union Bound): For any probability measure and any countable sequence of events
 of the underlying measurable space,

By this result, using that is �nite,

If we want this probability to be , we can set and conclude that with probability
, for any state-action pair ,

The following diagram summarizes the idea of union bounds:

(s, a) (T̂ q)(s, a)
(Tq)(s, a)

(T̂ q)(s, a) (Tq)(s, a)

(T̂ q)(s, a)
(Tq)(s, a) (s, a)

E(s, a) (T̂ q)(s, a) (Tq)(s, a)

E(s, a) = {|(T̂ q)(s, a) − (Tq)(s, a)| > Δ(ζ, m)} ,

E = ∪(s,a)E(s, a) E E(s, a)

max
(s,a)∈S×A

|(T̂ q)(s, a) − (Tq)(s, a)| ≤ Δ(ζ, m) .

E

P

A1, A2, …

P (∪iAi) ≤ ∑
i

P(Ai).

S × A

P(E) ≤ ∑
(s,a)∈S×A

P(E(s, a)) ≤ SAζ .

0 ≤ ζ ′ ≤ 1 ζ = ζ ′

SA
1 − ζ ′ (s, a) ∈ S × A

|(T̂ q)(s, a) − (Tq)(s, a)| ≤ Δ(
ζ ′

SA
, m) =

γ

1 − γ
√ log 2SA

ζ ′

2m
. (4)

https://en.wikipedia.org/wiki/Boole%27s_inequality

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 7/17

To control the error of some bad event happening, we can break the the bad event into a number of
elementary parts. By controlling the probability of each such part, we can control the probability of the
bad event, or, alternatively, control the probability of the complementary “good” event. The worst case
for controlling the probability of the bad event is if the elementary parts do not overlap, but the
argument of course works even in this case.

Returning to our calculations, from the last formula we see that the errors grew a little compared to ,
but the growth is modest: the errors scale with the logarithm of the number of state-action pairs. While
this logarithmic error-growth is mild, it is unfortunate that the number of states appears here. To
control the errors, by this formulae we would need to choose to be proportional to the logarithm of
the size of the state space, which is better than a linear dependence, but still. One must wonder whether
this dependence is truly necessary? If it was, there would be a big gap between the complexity of
planning in deterministic and stochastic MDPs. We should not give in for this just yet!

The key to avoiding the dependence on the cardinality of the state is to avoid taking union bounds over
the whole state-action set. That this may be possible follows from that, thinking back to the recursive
implementation of the planner, we can notice that the planner does not necessarily rely on all the sets

.

To get a handle on this, it will be useful to introduce a notion of a distance induced by the set
 between the states. This distance between states and (denoted by)

will be the smallest number of steps that we can take to get from to , if in each step we choose one
“neighbouring” state to the last state, starting from state . Formally, this is the length of the
shortest sequence such that , and for each , (this is
the distance between states in the directed graph over the states with edges induced by).

With this, for , de�ne

(3)

m

Avoiding dependence on state space cardinality

C(s, a)

C(s) := ∪a∈AC(s, a) s s′ dist(s, s′)
s s′

s n

s0, s1, … , sn s0 = s sn = s′ i ∈ [n] si ∈ C(si−1)
C

h ≥ 0

Sh = {s ∈ S| dist(s0, s) ≤ h}

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 8/17

as the set of states accessible from by at most steps. Note that this is a nested sequence of sets and
, contains and its immediate “neighbors”, etc.

We may now observe that in the calculation of when function is called with a certain value
of , for the state that appears in the call we have

This can be proved by induction on , starting with .

Click here for the proof.

Taking into account that when is called with , the sets are not used (line 2), we see that
only states from are such that the calculation ever uses the set . Since ,

and in particular, , which is independent of the size of the state space. Of course, all
along, we knew this very well: This is why the total runtime is also independent of the size of the state
space.

The plan is to take advantage of this to avoid a union bound over all possible state-action pairs. We
start with a recursive expression for the errors.

Recall that . By the triangle inequality,

Now, observing that

we see that

In particular, de�ning

we see that

s0 h

S0 = s0 S1 s0

QH(s0, ⋅) q

0 ≤ k ≤ H

s ∈ SH−k .

k k = H

q k = 0 C(s, a)
s SH−1 C(s, a) |C(s, a)| = m

Sh ≤ 1 + (mA) + ⋯ + (mA)h ≤ (mA)h+1

SH−1 ≤ (mA)H

δH = ∥(T̂ H
0)(s0, ⋅) − q∗(s0, ⋅)∥∞

δH = ∥(T̂ H
0)(s0, ⋅) − q∗(s0, ⋅)∥∞ ≤ ∥(T̂ T̂ H−1

0)(s0, ⋅) − T̂ q∗(s0, ⋅)∥∞ + ∥T̂ q∗(s0, ⋅) − q∗(s0, ⋅)∥∞ .

|T̂ q(s, a) − T̂ q∗(s, a)| ≤
γ

m
∑

s′∈C(s,a)

|Mq − v∗|(s′) ≤ γ max
s′∈C(s)

|Mq − v∗|(s′) ,

δH ≤ γ max
s′∈C(s0),a∈A

|(T̂ H−1
0)(s′, a) − q∗(s′, a)| + ∥T̂ q∗(s0, ⋅) − q∗(s0, ⋅)∥∞ .

δh = max
s′∈SH−h,a∈A

|T̂ h
0(s′, a) − q∗(s′, a)|

=:∥T̂ h0−q∗∥SH−h

,

δH ≤ γδH−1 + ∥T̂ q∗ − q∗∥S0 ,

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 9/17

where we use the notation . More generally, we can prove by induction
on (starting with) that

while

where the last inequality uses that , which we shall assume for simplicity. Unfolding this
recursion for , letting

we get

We see that the �rst term in the sum on the right-hand side (in the parenthesis) is controlled by . It
remains to show that can also be controlled (by choosing appropriately).

In fact, notice that is the maximum-norm error with which approximates ,
but only for states in we need to control this error. By our earlier argument, this set has at most

 states, hence, it is believable that this error can be controlled even when is chosen
independently of the number of states.

Since has only states in it, one’s �rst instinct is to take a union bound over the error
events for the states in this set. The trouble is that the set itself is random. As such, it is not clear,
what the failure events should be? And how many failure events are we going to have? The size of this
set is also random! Notice that if are some events with and are
random indices, it does not hold that : One cannot apply the union bound to randomly

chosen events. In fact, in the worst case, .

To exploit that is a small set, we need to use one more time the structure. The reason that the
randomness of is not going to matter too much is because of the special way this set is
constructed. First of all, clearly, always and at this state the error

 is under control by Hoe�ding’s inequality. Next, we may consider the
neighbors of . If , either , in which case we already know that the error at is under
control, or is a “bona �de neighbor” and we can think of then generating the elements in just
inside the call of . Ultimately, the error at such a neighbor is under control because, by de�nition, all
the sets (with sweeping through all possible state-action pairs) are independently
chosen.

∥q∥U = maxs∈U,maxa∈A |q(s, a)|
1 ≤ h ≤ H h = H

δh ≤ γδh−1 + ∥T̂ q∗ − q∗∥SH−h
≤ γδh−1 + ∥T̂ q∗ − q∗∥SH−1

=:ε′/(1−γ)

,

δ0 = ∥q∗∥SH
≤ ∥q∗∥∞ ≤

1

1 − γ
,

ra(s) ∈ [0, 1]
(δh)h

δH ≤
γ H + ε′(1 + γ + ⋯ + γ H−1)

1 − γ
≤ (γ H +

ε′

1 − γ
)

1

1 − γ
. (5)

H

ε′ m

ε′/(1 − γ) T̂ q∗ q∗ = Tq∗

SH−1

(mA)H m

Controlling ∥T̂ q∗ − q∗∥SH−1

SH−1 (mA)H

SH−1

(Ai)i∈[n] P(Ai) ≤ δ I1, … , Ik ∈ [n]
P(∪k

j=1AIj
) ≤ kδ

P(∪k
j=1AIj

) = nδ

SH−1

SH−1

s0 ∈ SH−1

∥(T̂ q∗)(s0, ⋅) − Tq∗(s0, ⋅)∥∞

s0 S ∈ C(s0) S = s0 S

S C(S, a)
q

C(s, a) (s, a)

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 10/17

This suggests that we should consider the chronological order in which in the recursive call of function
 the states in appear. Let this order be , where ,

, is the second state that is called on (necessarily,), is the third such state.
Note that states may reappear in this sequence multiple times. Furthermore, by construction,

. Also note that the length of this sequence is not random: This length is exactly
the number of times is called, which is clearly not random.

That is under control directly follows from the next lemma:

Lemma: Assume that the immediate rewards belong to the interval. For any with
probability , for any ,

where is given by .

Proof: Recall that where (i) the are mutually
independent and (ii) for any , is an i.i.d. sequence with common distribution .

For , , , let

(as earlier, means that is an element of the set composed of the elements in the sequence).

Recall that by the de�nition of and the properties of ,

Fix . Let . That is, is the time when �rst appears in the
sequence .

Fix . We claim that given , is i.i.d. with common distribution . That is,

for any ,

Note that given this, for any , by ,

q SH−1 S1, S2, … , Sn n = 1 + (mA) + ⋯ + (mA)H−1

S1 = s0 S2 q S2 ∈ C(s0) S3

SH−1 = {S1, … , Sn}
q

∥T̂ q∗ − q∗∥SH−1 = ∥T̂ q∗ − Tq∗∥SH−1

[0, 1] 0 ≤ ζ ≤ 1
1 − Anζ 1 ≤ i ≤ n

∥T̂ q∗(Si, ⋅) − q∗(Si, ⋅)∥∞ ≤ Δ(ζ, m) ,

Δ (3)

C(s, a) = (S ′
1(s, a), … , S ′

m(s, a)) (C(s, a))(s,a)

(s, a) (S ′
i(s, a))i Pa(s)

s ∈ S a ∈ A C ∈ Sm

g(s, a, C) = |
γ

m
∑
s′∈C

v∗(s′) − ⟨Pa(s), v∗⟩|

s′ ∈ C s′ C

T̂ q∗

|T̂ q∗(s, a) − q∗(s, a)| = |
γ

m
∑

s′∈C(s,a)

v∗(s′) − ⟨Pa(s), v∗⟩| = g(s, a, C(s, a)) . (6)

1 ≤ i ≤ n τ = min{1 ≤ j ≤ i : Sj = Si} τ Si

{Si}i

a ∈ A Sτ (S ′
j(Sτ , a))m

j=1 Pa(Sτ)

s, s′
1, … , s′

m ∈ S

P(S ′
1(Sτ , a) = s′

1, … , S ′
m(Sτ , a) = s′

m | Sτ = s) =
m

∏
j=1

P(s, a, s′
j) (7)

Δ ≥ 0 (6)

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 11/17

for some binary valued functions , , where for , is de�ned so that

holds if and only if holds, where and are arbitrary so that
. That such functions exist follows because for any sequence to verify whether

the knowledge of the sets su�ces: The appropriate function should �rst check
, then move on to checking only if holds, etc.

Now, notice that by our assumptions, for , and
are independent of each other. Hence,

Plugging this back into the previous displayed equation, “unrolling” the expansion done using the law
of total probability, we �nd that

Now, choose from so that, thanks to , for any �xed ,
 Plugging this in into the previous display we get

The claim the follows by a union bound over all actions and all .

Putting everything together, we get that for any , the policy induced by the planner is
-optimal with

P(|T̂ q∗(Si, a) − q∗(Si, a)| > Δ) = P(g(Si, a, C(Si, a)) > Δ)
= P(g(Sτ , a, C(Sτ , a)) > Δ)

= ∑
s

P(g(s, a, C(s, a)) > Δ, Sτ = s)

= ∑
s

∑
1≤j≤i

P(g(s, a, C(s, a)) > Δ, Sj = s, τ = j)

= ∑
s

∑
1≤j≤i

∑ P(g(s, a, C(s, a)) > Δ, Sj = s, S1:j−1 = s1:j−1)

= ∑
s

∑
1≤j≤i

∑ P(g(s, a, C(s, a)) > Δ, ϕj(s, s1:j−1, C(s1), … , C(sj−1)) = 1) ,

s1:j−1∈S j−1:
s∉s1:j−1

s1:j−1∈S j−1:
s∉s1:j−1

ϕ1 … ϕi 1 ≤ j ≤ i ϕj

ϕj(s, s1:j−1, C(s1), … , C(sj−1)) = 1

Sj = s, S1:j−1 = s1:j−1 s ∈ S s1:j−1 ∈ S j−1

s ∉ s1:j−1 s1:j S1:j = s1:j

C(s1), … , C(sj−1)
S1 = s1 S2 = s2 S1 = s1

s ∉ s1:j−1 C(s, a) ϕj(s, s1:j−1, C(s1), … , C(sj−1)) = 1

P(g(s, a, C(s, a)) > Δ, ϕj(s, s1:j−1, C(s1), … , C(sj−1)) = 1)

= P(g(s, a, C(s, a)) > Δ) ⋅ P(ϕj(s, s1:j−1, C(s1), … , C(sj−1)) = 1) .

P(|T̂ q∗(Si, a) − q∗(Si, a)| > Δ) = ∑
s

P(g(s, a, C(s, a)) > Δ)P(Sτ = s) .

Δ = Δ(ζ, m) (3) |q∗|∞ ≤ 1/(1 − γ) (s, a)
P(g(s, a, C(s, a)) > Δ(ζ, m)) ≤ ζ

P(|T̂ q∗(Si, a) − q∗(Si, a)| > Δ(ζ, m)) ≤ ζ∑
s

P(Sτ = s) = ζ .

1 ≤ i ≤ n ■

Final error bound
0 ≤ ζ ≤ 1 π̂

ϵ(m, H, ζ)

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 12/17

Thus, to obtain a planner that induces a -optimal policy, we can set , and so that each term
above contributes at most :

For we get that we can set . We can also set . To solve for the
smallest that satis�es the last inequality, recall that . To �nd the critical value of note
the following elementary result which we cite without a proof:

Proposition: Let , . Let . Then, for any positive real such that ,

From this, de�ning

and

if then all the inequalities are satis�ed. Putting things together, we thus get the following
result:

Theorem: Assume that the immediate rewards belong to the interval. There is an online planner
such that for any , in any discounted MDP with discount factor , the planner induces a -optimal
policy and uses at most elementary arithmetic and logic operations per its calls, where

 is given by and .

ϵ(m, H, ζ) :=
2

(1 − γ)2
γ H +

1

1 − γ

log(2nA
ζ
)

2m
+ ζ .

⎡⎢⎣ ⎷ ⎤⎥⎦δ H ζ m

δ/3

2γ H

1 − γ
≤ (1 − γ)

δ

3
,

ζ ≤ (1 − γ)2 δ

6
and

m

log(2nA
ζ
)

≥
18

δ2(1 − γ)6
.

H H = ⌈Hγ,(1−γ)δ/6⌉ ζ = (1 − γ)2δ/6
m n = (mA)H m

a > 0 b ∈ R t∗ = 2
a
[log (1

a
) − b] t t ≥ t∗

at + b > log(t) .

cδ =
18

δ2(1 − γ)6

m∗(δ, A) = 2cδ [H log(cδH) + log(
12

(1 − γ)2δ
) + (H + 1) log(A)] (8)

m ≥ m∗

[0, 1]
δ ≥ 0 γ δ

O((m∗A)H)
m∗(δ, A) (8) H = ⌈Hγ,(1−γ)δ/3⌉

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 13/17

Overall, we see that the runtime did increase compared to the deterministic case (apart from
logarithmic factors, in the above result whereas in the deterministic case !), but we
managed to get a runtime that is independent of the cardinality of the state space. Again, what is
troubling is the exponential dependence on the e�ective horizon, though as we have seen, in the
worst-case, this is unavoidable. In the next lectures we will consider proving the planner with extra
information so that this exponential dependence can be avoided.

The idea of the algorithm that we analyzed comes from a paper by Kearns, Mansour and Ng from 2002.
In their paper they consider the version of the algorithm which creates a fresh “new” random set

 in every recursive call. This makes it harder to see their algorithm as approximating the Bellman
operator, but in e�ect, the two approaches are by and large the same. In fact, if we introduce random

operators, , , which are the same as above but has its own “private” sets ,

then their algorithm can be written as computing

It is not hard to modify the analysis given here to accommodate this change. With this, one can also
interpret the calculations done by the algorithm as backing up values in a “sparse lookahead tree” built
recursively from .

Much work has been devoted to improving these basic ideas and eventually these ideas led to various
Monte-Carlo tree search algorithms, including yours truly’s UCT. In general, these algorithms attempt
to improve on the runtime by building the trees when they need to be built. As it turns out, a useful
strategy here is to expand nodes which in a way hold the greatest promise to improve the value at the
“root”. This is known as the “optimisism in planning”. Note that A* (and its MDP relative, AO) are also
based on optimism: A’s admissible heuristic functions in our language correspond to functions that
upper bound the optimal value. The de�nite source on MCTS theory as of today is
Remi Munos’s monograph.

Hoe�ding’s inequality is a special case of what is known as measure concentration. This phrase refers
to that the empirical measure induced by a sample is a good approximation to the whole measure. The
simplest case is when one just compares the means of the measures (the empirical and the sample-
generating one), giving rise to concentration inequalities around the mean. Hoe�ding’s inequality is an
example. What we like about Hoe�ding’s inequality (besides that it is simple) is that the failure
probability, (later) appears inside a logarithm. That means, that the price of being more stringent is

mild. When the exact dependence is of type that appears in Hoe�ding’s inequality (i.e.,),
we say that the deviation of the subgaussian type because Gaussian random variables also satisfy an

m = H 7/δ2 m = 1

Notes

Sparse lookahead trees

C(s, a)
H

T̂1 … T̂H T̂ T̂h (Ĉh(s, a))(s,a)

A = arg max
a

(T̂1 … T̂h0)(s0, a) .

s0

Measure concentration

δ ζ

√log(1/δ))

https://www.nowpublishers.com/article/Details/MAL-038

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 14/17

inequality like this. Concentration of measure and concentration inequalities are a central topic in
probability theory, with separate books devoted to them. A few favourites are given at the end of this
notes . For learning purposes, Pollard’s mini-book is nice (but all these books have pros and cons), or
Vershynin’s book.

The comparison inequality between the logarithm and the linear function is given as Proposition 4
here. The proof is based on two observations: First, it is enough to consider the case when . Then,
if , the result is trivial, while for , the guess is based on doubling the value where the growth
rate of matches that of .

A key idea of this lecture is that is a good (random) approximation to , hence, it can be used in place

of . One can also tell this story by saying that the data underlying gives a random approximation to
the MDP; the transition probabilities of this random approximating MDP would be de�ned using

It may seem quite miraculous that with only a few elements in (i.e., small) we get a good
approximation to the next state distribution. But so is the magic of randomness! Using a random
operator (or a sequence of them, if, as outlined above, one uses a fresh set of random next state every
time an update is calculated) in a dynamic programming method has been coined empirical dynamic
programming by Haskell et al..

A bigger point is that for a model to be a “good” approximation to the “true MDP”, it su�ces that the
Bellman optimality operator that it induces is a “close” approximation to the Bellman optimality

operator of the true MDP.

This in fact brings us to our next topic, which is what happens when the simulator is imperfect?

We can rarely expect simulators to be perfect. Luckily, not all is lost in this case. As noted above, if the
simulator induced an MDP whose Bellman optimality operator is in a way close to the Bellman
optimality operator of the true MDP, we expect the outcome of planning to be still a good policy in the
true MDP.

In fact, the above proof has already all the key elements in place to show this. In particular, it is not

hard to show that if is a max-norm contraction and is its �xed point then

The comparison inequality

b = 0
a ≥ 1 a < 1

t ↦ at t ↦ log(t)

A model-centered view and random operators

T̂ T

T T̂

P̂(s, a, s′) =
1

m
∑

s′′∈C(s,a)

I{s′′ = s′}

C(s, a) m

Imperfect simulation model?

T̂ γ q̂∗

∥q̂∗ − q∗∥∞ ≤
∥T̂ q∗ − Tq∗∥∞

1 − γ
,

https://sites.ualberta.ca/~szepesva/papers/Allocation-TCS10.pdf

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 15/17

which, combined with the our �rst lemma of this lecture on the policy error bound gives that the policy
that is greedy with respect to is

optimal in the MDP underlying . We will return to this in later lectures. In particular, in batch
reinforcement learning, one of the basic methods is to learn a “model” of the environment and as such
it is inevitable to study the error that results from modelling errors. See Lecture 17 and Lecture 18.

We saw in homework 0 that randomization may help a little, and today we saw that it can help in a
more signi�cant way. A major lesson again is that representations do matter: If the MDP is not given
with a “generative simulator”, getting such a simulator may be really hard. This is good to remember
when it comes to learning models:

One should insist on learning models that make the job of planners easier.

Generative models are one such case, provably, as we have seen in today’s lecture put together with our
previous lower bound that involved the number of states. Randomization, more generally, is a powerful
tool in computing science, which brings us to a somewhat philosophical question: What is randomness?
Does “true randomness” exist? Can we really build computers to harness this?

What is the meaning of “true” randomness? The margin is de�nitely not big enough to explain this.
Hence, we just leave this there, hanging, for everyone to ponder about. But let’s also note that this is a
thoroughly studied question in theoretical computing science, with many beautiful results and even
books. Arora and Barak’s book on computational complexity (Chapters 7, 20 and 21) is a good start for
exploring this.

If simulation is expensive, it may be tempting to recycle the sets between calls of the planner. After all,
even if we recycle these sets, will have the property that it selects -optimizing actions with high
probability at every state. However, this may not be a good idea. The reader is challenged to think about

what can go wrong? The proof actually uses that the planner construct a new random operator with
every call. But where is this used?

All the computations that we do with MDPs tend to be approximate. We evaluate policies
approximately. We compute a Bellman back approximately. We have approximate models. We greedify
approximately. If any of these operations could enlarge small errors, none of the approximate methods
would work. The study of approximate computations (which is a necessity if one faces large MDPs) is a
study of the sensitivity of the values of the resulting policies to the errors introduced in the
computations. This, in numerical analysis, would be called error analysis. In other areas of

q̂∗

2∥T̂ q∗ − Tq∗∥∞

(1 − γ)2

T

Monte-Carlo methods

True randomness?

Can we recycle the sets between the calls?C(s, a)

π̂ ϵ

T̂

The ubiquity of continuity arguments in the MDP literature

https://rltheory.github.io/lecture-notes/batch-rl/lec17/
https://rltheory.github.io/lecture-notes/batch-rl/lec18/

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 16/17

mathematics, this is called sensitivity analysis. In fact, sensitivity analysis often involves computing
derivatives to see how fast outputs change as the inputs change (which is that data that will be
approximated). What should we be taking derivatives with respect to here? Well, it is always the data
that is being changed. One can in fact use di�erentiation based sensitivity analysis everywhere. This
has been tried a little in the “older” MDP literature and is also related to policy gradient theorems (that
we will learn about laters). However, perhaps there are more nice things to be discovered about this
approach.

The algorithm that is analyzed in this lecture requires local access simulators. This is better than
requiring global access, but worse than requiring online access. It remains an open question of whether
with online access, one can also get a similar result than shown in the present lecture and if not,
whether the sample complexity of planning remains �nite under this setting.

For �nite state-action MDPs where the rewards and transition probabilities are represented using
tables, a previous lecture’s main result established that an optimal policy of the MDP can be calculated
by using at most arithmetic and logic operations (here). In the
current lecture we saw that even when is unbounded, given a simulator with local access,

 such elementary operations and calls to a simulator are su�cient. In a �nite MDP,
depending on the values of and , either policy iteration, or the online planner that builds the tree
will be faster. But policy iteration (and value iteration) as described previously used a table
representation. The question then arises of what is the sample complexity of planning with a simulator
access to a �nite MDP? If planning means outputting a policy, the complexity needs to scale with . In
the presence of global access simulators, a simple approach, is to sample an appropriate number of
next states for each state-action pair to build an empirical (but “sparse”) transition model and use this
in connection with any MDP solver. We will see later in Lecture 18 that in this case
samples (or samples per state-action pair) are su�cient to obtain a -optimal policy.

In the case of online planning with global access, the sample complexity cannot be worse, but it is
unclear whether it can be improved. Similarly, it is unclear what the complexity is in the case of either
local or online access.

Kearns, M., Mansour, Y., & Ng, A. Y. (2002). A sparse sampling algorithm for near-optimal planning
in large Markov decision processes. Machine learning, 49(2), 193-208. [link]

David Pollard (2015). A few good inequalities. Chapter 2 of a book under preparation with working
title “MiniEmpirical”. [link]

Stephane Boucheron, Gabor Lugosi and Pascal Massart (2012). Concentration inequalities: A
nonasymptotic theory of indepndence. Clarendon Press – Oxford. [link]

Roman Vershynin (2018). High-Dimensional Probability: An Introduction with Applications in Data
Science. [link]

From local to online access

When the state space is small

O(Hpoly(S, A)) H = 1/(1 − γ)
S

~
O((AH 7/δ2)H)

S, A H

S

O(H 3SA/δ2)
H 3/δ2 δ

References
•

•

•

•

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec4/
https://rltheory.github.io/lecture-notes/batch-rl/lec18/
https://www.cis.upenn.edu/~mkearns/papers/sparsesampling-journal.pdf
http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf
https://www.hse.ru/data/2016/11/24/1113029206/Concentration%20inequalities.pdf
https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.html

5/16/22, 11:21 PM 6. online planning - Part II. - RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6/ 17/17

M. J. Wainwright (2019) High-dimensional statistics: A non-asymptotic viewpoint. Cambridge
University Press.

La�erty J., Liu H., & Wasserman L. (2010). Concentration of Measure. [link]

Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.

William B. Haskell, Rahul Jain, and Dileep Kalathil. Empirical dynamic programming. Mathematics
of Operations Research, 2016.

Sanjeev Arora and Boaz Barak (2009). Computational Complexity: A Modern Approach. Cambridge
University Press.

Remi Munos (2014). From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to
Optimization and Planning. Foundations and Trends in Machine Learning: Vol. 7: No. 1, pp 1-129.

0 Comments rltheory 🔒 Disqus' Privacy Policy 1 Login

t Tweet f Share Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Be the first to comment.

Subscribe✉ Add Disqus to your siteAdd DisqusAddd Do Not Sell My Data⚠

 Favorite

Copyright © 2020 RL Theory.

•

•

•

•

•

•

http://www.stat.cmu.edu/~larry/=sml/Concentration.pdf
https://banditalgs.com/
https://disqus.com/
https://disqus.com/home/forums/rltheory/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/home/inbox/
https://publishers.disqus.com/engage?utm_source=rltheory&utm_medium=Disqus-Footer
https://disqus.com/data-sharing-settings/

