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RL Theory

Planning in MDPs / 8. Approximate Policy Iteration

Note: On March 13, 2021, these notes were updated as follows:

One simple idea to use function approximation in MDP planning is to take a planning
method that uses internal value functions and add a constraint that restrict the value
functions to have a compressed representation.

As usual, two questions arise:

Does this lead to an efficient planner? That is, can the computation be carried out in time
polynomial in the relevant quantities, but not the size of the state space? In the case of
linear functions the question is whether we can calculate the coefficients efficiently.

Does this lead to an effective planner? In particular, how good a policy can we arrive at
with a limited compute effort?

In this lecture, as a start into exploring the use of value function approximation in planning,
we look at modifying policy iteration in the above described way. The resulting algorithm
belongs to the family of approximate policy iteration algorithms, which consists of all
algorithms derived from policy iteration by adding approximation to it.

We will work with linear function approximation. In particular, we will assume that the
planner is given as a hint a feature-map . In this setting, since policy
iteration hinges upon evaluating the policies obtained, the hint given to the planner is
considered to be “good” if the (action-)value functions of all policies are well-represented
with the features.

8. Approximate Policy Iteration

Tighter bounds are derived; the old analysis was based on bounding ; the
new analysis directly bounds , which leads to a better dependence on the
approximation error;

1 ∥q∗ − qπk∥∞

∥v∗ − vπk∥∞

Unbiased return estimates are introduced that use rollouts of random length.2

•

•

φ : S × A → R
d
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This means, that we will work under assumption B2  from the previous lecture, which we
copy here for convenience. In what follows we fix .

Assumption B2  (approximate universal value function realizibility) The MDP  and the
featuremap  are such that for any memoryless policy  of the MDP, .

Recall that here the notation  means that  can be approximated up to a uniform
error of  using linear combinations of the basis functions underlying the feature-map :

For any policy ,

One may question whether it is reasonable to expect that the value functions of all policies
can be compressed. We will come back to this question later.

Recall that in phase  of policy iteration, given a policy , the next policy  is obtained
as the policy that is greedy with respect to . If we found some coefficients  such
that

then when it comes to “using” policy , we could just use  when
an action is needed at state . Note that this action can be obtained at the cost of 
elementary operations, a small overhead compared to a table lookup (with idealized 
access times).

Hence, the main question is how to obtain this parameter in an efficient manner. To be
more precise, here we want to control the uniform error committed in approximating .

To simplify the notation, let . A simple idea is rolling
out with the policy  from a fixed set  to
“approximately” measure the value of  at the pairs in . For
concreteness, let . Rolling out with policy this pair
means using the simulator to simulate what would happen if
we used policy  for a number of consecutive time steps when the initial state is , the first
action , but for subsequent time steps the actions are chosen using policy  for whatever
states are encountered. If the simulation goes on for  steps, this way we get  trajectories

starting in . For  let the trajectory obtained be . Thus,

ε

ε > 0

ε M

φ π qπ ∈ε Fφ

qπ ∈ε Fφ qπ

ε φ

π

inf
θ∈Rd

max
(s,a)

|qπ(s, a) − ⟨θ,φ(s, a)⟩|(= inf
θ∈Rd

∥qπ − Φθ∥∞) ≤ ε .

Approximate Policy Evaluation: Done Well
k πk πk+1

qπk θk ∈ R
d

qπk ≈ Φθk ,

πk+1 arg maxa⟨θk,φ(s, a)⟩
s O(d)

O(1)

qπk

π = πk

π C ⊂ S × A

π C

(s, a) ∈ C

π s

a π

H m

z = (s, a) 1 ≤ j ≤ m τ
(j)
π (s, a)
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,

where , , and for , , and 

. The figure on the right illustrates these trajectories.

Given these trajectories, the empirical mean of the discounted sum of rewards along these
trajectories is used for approximating :

Under the usual condition that the rewards are in the  interval, the expected value of 
 is in the  vicinity of the  and by averaging a large number of

independent trajectories, we also achieve that the empirical means are tightly concentrated
around their mean.

Using a randomization device, it is possible to remove the error (“bias”) introduced by
truncating the trajectories at a fixed time. For this, just let  be independent
geometrically distributed random variables with parameter , which are also
independently chosen from the trajectories. By definition  is the number of -
parameter Bernoulli trials needed to get one success. With the help of these variables, define

now  by

Note that in the expression of  the discount factor is eliminated. To calculate 
one can just perform a rollout with policy  as before, just in each time step ,

after obtaining , draw a Bernoulli variable with parameter  to decide

whether the rollout should continue.

To see why the above definition works, fix  and note that by definition, for , 
 and thus . Therefore,

τ
(j)
π (s, a) = (S (j)

0 ,A
(j)
0 ,S

(j)
1 ,A

(j)
1 , … ,S

(j)
H−1,A

(j)
H−1)

S
(j)
0 = s A

(j)
0 = a 1 ≤ t ≤ H − 1 S

(j)
t ∼ P

A
(j)
t

(S (j)
t−1)

A
(j)
t ∼ π(⋅|S (j)

t )

qπ(z)

R̂m(z) =
1
m

m

∑
j=1

H−1

∑
t=0

γ tr
A

(j)
t

(S
(j)
t ). (1)

[0, 1]
q̂π(z) γH/(1 − γ) qπ(z)

(H (j))j
1 − γ

H (j) 1 − γ

R̂m(z)

R̂m(z) =
1
m

m

∑
j=1

H (j)−1

∑
t=0

r
A

(j)
t

(S (j)
t ) . (2)

R̂m(z) R̂m(z)
π t = 0, 1, …

r
A

(j)
t

(S
(j)
t ) (1 − γ)

j h ≥ 1
P(H (j) = h) = γh−1(1 − γ) P(H (j) ≥ t + 1) = γ t
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All in all, this means, that we expect that if we solve for the least-squares problem

we expect  to be a good approximation to . Or at least, we can expect this hold at the
points of , where we are taking our measurements. The question is what happens outside
of : That is, what guarantees can we get for extrapolating to points of . The
first thing to observe that unless we are choosing  carefully, there is no guarantee about
the extrapolation error will be kept under control. In fact, if the choice of  is so unfortunate
that all the feature vectors for points in  are identical, the least-squares problem will have
many solutions.

Our next lemma gives an explicit error bound on the extrapolation error. For the coming
results we slightly generalize least-squares by introducing a weighting of the various errors
in . For this, let  be a weighting function assigning a positive weight to
the various error terms and let

be the minimizer of the resulting weighted squared-loss. A simple calculation gives that
provided the (weighted) moment matrix

is nonsingular, the solution to the above weighted least-squares problem is unique and is
equal to

E[
H (j)−1

∑
t=0

r
A

(j)
t

(S
(j)
t )] =

∞

∑
t=0

E[I{t ≤ H (j) − 1}r
A

(j)
t

(S (j)
t )]

=
∞

∑
t=0

E[I{t ≤ H (j) − 1}] E[r
A

(j)
t

(S (j)
t )]

=
∞

∑
t=0

P(t + 1 ≤ H (j)) E[r
A

(j)
t

(S (j)
t )]

=
∞

∑
t=0

γ t
E[r

A
(j)
t

(S (j)
t )]

= qπ(z) .

θ̂ = arg min
θ∈Rd

∑
z∈C

(⟨θ,φ(z)⟩ − R̂m(z))
2

, (3)

Φθ̂ qπ

C

C Z := S × A

C

C

C

(3) ϱ : C → (0, ∞)

θ̂ = arg min
θ∈Rd

∑
z∈C

ϱ(z)(⟨θ,φ(z)⟩ − R̂m(z))
2

(4)

Gϱ = ∑
z∈C

ϱ(z)φ(z)φ(z)⊤ (5)
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From this expression we see that there is no loss of generality in assuming that the weights
in the weighting function sum to one: . We will denote this by writing 

 (here,  refers to the fact that we can see  as an element of a  simplex).
To state the lemma recall the notation that for a positive definite,  matrix  and
vector ,

Lemma (extrapolation error control in least-squares): Fix any , , 
and  such that the moment matrix  is nonsingular. Define

Then, for any  we have

Before the proof note that what his lemma tells us is that as long as we guarantee that the
moment matrix is full rank, the extrapolation errors relative to predicting with some 

 can be controlled by controlling

Proof: First, we relate  to :

θ̂ = G−1
ϱ ∑

z′∈C

ϱ(z′)R̂m(z′)φ(z′) ,

∑z∈C
ϱ(z) = 1

ϱ ∈ Δ1(C) Δ1 ϱ |C| − 1
d × d Q

x ∈ R
d

∥x∥2
Q = x⊤Qx .

θ ∈ R
d ε : Z → R C ⊂ Z

ϱ ∈ Δ1(C) Gϱ

θ̂ = G−1
ϱ ∑

z′∈C

ϱ(z′)(φ(z′)⊤θ + ε(z′))φ(z′) .

z ∈ Z

φ(z)⊤θ̂ − φ(z)⊤θ ≤ ∥φ(z)∥G−1
ϱ

max
z′∈C

ε(z′) .∣ ∣ ∣ ∣θ ∈ R
d

the value of ; and1 g(ϱ) := maxz∈Z ∥φ(z)∥G−1
ϱ

the maximum deviation of the targets used in the weighted least-squares problem and
the predictions with .

2

θ

θ̂ θ

θ̂ = G−1
ϱ ∑

z′∈C

ϱ(z′)(φ(z′)⊤θ + ε(z′))φ(z′)

= G−1
ϱ (∑

z′∈C

ϱ(z′)φ(z′)φ(z′)⊤)θ + G−1
ϱ ∑

z′∈C

ϱ(z′)ε(z′)φ(z′)

= θ + G−1
ϱ ∑

z′∈C

ϱ(z′)ε(z′)φ(z′).
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Then for a fixed ,

To get a sense of how to control the sum notice that if  in the last sum was somehow
replaced by , using the definition of  could greatly simplify the last expression. To
get here, one may further notice that having the term in absolute value squared would help.
Now, to get the squares, recall Jensen’s inequality, which states that for any convex
function  and probability distribution , . Of course, this
also works when  is a finitely supported, which is the case here. Thus, applying Jensen’s
inequality with , we thus get

Plugging this back into the previous inequality gives the desired result. 

It remains to be seen of whether  can be kept under control. This is

the subject of a classic result of Kiefer and Wolfowitz:

Theorem (Kiefer-Wolfowitz): Let  be finite. Let  be such that the underlying
feature matrix  is rank . There exists a set  and a distribution  over
this set, i.e. , such that

z ∈ Z

φ(z)⊤θ̂ − φ(z)⊤θ = ∑
z′∈C

ϱ(z′)ε(z′)φ(z)⊤G−1
ϱ φ(z′)

≤ ∑
z′∈C

ϱ(z′)|ε(z′)| ⋅ |φ(z)⊤G−1
ϱ φ(z′)|

≤ (max
z′∈C

|ε(z′)|)∑
z′∈C

ϱ(z′)|φ(z)⊤G−1
ϱ φ(z′)| .∣ ∣ ∣ ∣φ(z)

φ(z′) Gϱ

f μ f (∫ uμ(du)) ≤ ∫ f(u)μ(du)
μ

f(x) = x2

(∑
z′∈C

ϱ(z′)|φ(z)⊤G−1
ϱ φ(z′)|)

2

≤ ∑
z′∈C

ϱ(z′)|φ(z)⊤G−1
ϱ φ(z′)|2

= ∑
z′∈C

ϱ(z′)φ(z)⊤G−1
ϱ φ(z′)φ(z′)⊤G−1

ϱ φ(z)

= φ(z)⊤G−1
ϱ (∑

z′∈C

ϱ(z′)φ(z′)φ(z′)⊤)G−1
ϱ φ(z)

= φ(z)⊤G−1
ϱ φ(z) = ∥φ(z)∥2

G−1
ϱ

■

g(ϱ) = maxz ∥φ(z)∥G−1
ϱ

Z φ : Z → R
d

Φ d C ⊆ Z ϱ : C → [0, 1]
∑z′∈C

ϱ(z′) = 1

;1 |C| ≤ d(d + 1)/2

;2 supz∈Z ∥φ(z)∥G−1
ϱ

≤ √d

https://en.wikipedia.org/wiki/Jensen%27s_inequality
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We will not give a proof of the theorem, but we give references at the end where the reader
can look up the proof. When  is not full rank (i.e.,  is not rank ), one may reduce the
dimensionality (and the cardinality of  reduces accordingly). The problem of choosing 
and  such that  is minimized is called the -optimal design problem in statistics. This
is a specific instance of optimal experimental design.

Combining the Kiefer-Wolfowitz theorem with the previous lemma shows that least-

squares amplifies the “measurement errors” by at most a factor of :

Corollary (extrapolation error control in least-squares via optimal design): Fix any 
 full rank. Then, there exists a set  with at most  elements and

a weighting function  such that for any  and any ,

where  is given by

Importantly, note that  and  are chosen independently of  and , that is, they are
independent of the target. This suggests that in approximate policy evaluation, one should
choose  as in the Kiefer-Wolfowitz theorem and use the  weighted moment matrix.
This leads to 

where  is defined by Eq.  and  is defined by Eq. . We call this procedure least-
square policy evaluation based on rollouts from -optimal design points, or LSPE- , for
short. Note that we stick to the truncated rollouts, because this allows a simpler
probabilistic analysis. That this properly controls the extrapolation error is as attested by
the next result:

In the previous line, the inequality is achieved with equality and the value of  is best
possible under all possible choices of  and .

3 √d

C ρ

φ Φ d

C C

ρ g(ρ) G

√d

φ : Z → R
d C ⊂ Z d(d + 1)/2

ϱ ∈ Δ1(C) θ ∈ R
d ε : C → R

max
z∈Z

φ(z)⊤θ̂ − φ(z)⊤θ ≤ √d max
z′∈C

ε(z′) .∣ ∣ ∣ ∣θ̂

θ̂ = G−1
ϱ ∑

z′∈C

ϱ(z′)(φ(z′)⊤θ + ε(z′))φ(z′) .

C ϱ θ ϵ

(C, ρ) ρ

θ̂ = G−1
ϱ ∑

z′∈C

ϱ(z′)R̂m(z′)φ(z′) . (6)

R̂m(z) (1) Gϱ (5)
G G
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Lemma (LSPE-  extrapolation error control): Fix any full-rank feature-map 
and take the set  and the weighting function  as in the Kiefer-Wolfowitz
theorem. Fix an arbitrary policy  and let  and  such that  and assume that

immediate rewards belong to the interval . Let  be as in Eq. . Then, for any 
, with probability ,

Notice that that from the Kiefer-Wolfowitz theorem,  and therefore nothing in
the above expression depends on the size of the state space. Now, say we want to make the

above error bound at most  with some value of . From the above
we see that it suffices to choose  and  so that

This, together with  gives

Proof: In a nutshell, we use the previous corollary, together with Hoeffding’s inequality and
using that , which follows since the rewards are bounded in 

.

Click here for the full proof.

In summary, what we have shown so far is that if the features can approximate well the
action-value function of a policy, then there is a simple procedure (Monte-Carlo rollouts
and least-squares estimation based on an optimal experimental design) to produce an
reliable estimate of the action-value function of the policy. The question remains whether if
we use these estimates in policy iteration, the whole procedure will still give good policies
after a sufficiently large number of iterations.

G φ : Z → R
d

C ⊂ Z ϱ ∈ Δ1(C)
π θ επ qπ = Φθ + επ

[0, 1] θ̂ (6)
0 ≤ δ ≤ 1 1 − δ

qπ − Φθ̂
∞

≤ ∥επ∥∞(1 + √d) + √d(
γH

1 − γ
+

1
1 − γ

√ log(2|C|/δ)

2m
).∥ ∥ (7)

|C| = O(d2)

∥επ∥∞(1 + √d) + 2ε ε > 0
H m

γH

1 − γ
≤ ε/√d and

1
1 − γ

√ log(2|C|/δ)
2m

≤ ε/√d.

|C| ≤ d(d + 1)/2

H ≥ H
γ,ε/√d

and m ≥
d

(1 − γ)2ε2
log

d(d + 1)

δ
.

|qπ − T H
π 0|∞ ≤ γH/(1 − γ)

[0, 1]

■

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec6#lem:hoeff
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Here we give a refinement of the geometric progress lemma of policy iteration that allows
for “approximate” policy improvement steps. This previous lemma stated that the value
function of the improved policy  is at least as large as the Bellman operator applied to the
value function of the policy  to be improved. Our new lemma is as follows:

Lemma (Geometric progress lemma with approximate policy improvement): Consider a
memoryless policy  and its corresponding value function . Let  be any policy and
define  via

Then,

Proof: First note that for the optimal policy , . We have

Using the value difference identity and that , we calculate

where the inequality follows because , the sum of positive

linear operators, is a positive linear operator itself and hence is also monotone. Plugging the
inequality obtained into  gives

Taking the maximum norm of both sides and using the triangle inequality and that 
 gives the desired result. 

Progress Lemma with Approximation Errors

π′

π

π vπ π′

ε : S → R

Tvπ = Tπ′vπ + ε .

∥v∗ − vπ
′

∥∞ ≤ γ∥v∗ − vπ∥∞ +
1

1 − γ
∥ε∥∞.

π∗ Tπ∗v∗ = v∗

v∗ − vπ
′
= Tπ∗v∗ − Tπ∗vπ +

≤Tvπ

Tπ∗vπ − Tπ′vπ + Tπ′vπ − Tπ′vπ
′

≤ γPπ∗(v∗ − vπ) + ε + γPπ′(vπ − vπ
′
) .



(10)

vπ = Tπv
π ≤ Tvπ

vπ − vπ
′

= (I − γPπ′)−1[vπ − Tπ′vπ] ≤ (I − γPπ′)−1[Tvπ − (Tvπ − ε)] = (I − γPπ′)−1ε ,

(I − γPπ′)−1 = ∑k≥0(γPπ′)k

(10)

v∗ − vπ
′
≤ γPπ∗(v∗ − vπ) + (I − γPπ′)−1ε.

∥(I − γPπ′)−1∥∞ ≤ 1/(1 − γ) ■

Approximate Policy Iteration

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec4#lem:geoprogress
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Notice that the progress lemma makes no assumptions about the origin of the errors. This
motivates considering a generic version of approximate policy iteration where for  in
the th update set, the new policy  is approximately greedy with respect to  in that
sense that

The progress lemma implies that the resulting sequence of policies will have value
functions that converge to a neighborhood of  where the size of the neighborhood is
governed by the magnitude of the error terms .

Theorem (Approximate Policy Iteration): Let ,  be such that  holds for all 
. Then, for any ,

Proof: Left as an exercise. 

Consider now a version of approximate policy iteration where the sequence of policies 
 is defined as follows:

That is, for each ,  is greedy with respect to .

Corollary (Approximate Policy Iteration with Approximate Action-value Functions): The
sequence defined in  is such that

Proof: To simplify the notation consider policies  and functions  over the state-
action space such that  and . We have

k ≥ 1
k πk vπk

Tvπk = Tπk+1v
πk + εk . (11)

v∗

(εk)k

(πk)k≥0 (εk)k (11)
k ≥ 0 k ≥ 1

∥v∗ − vπk∥∞ ≤
γk

1 − γ
+

1
(1 − γ)2

max
0≤s≤k−1

∥εs∥∞ . (12)

■

(πk)k≥0

qk = qπk + ε′
k, Mπk

qk = Mqk , k = 0, 1, … . (13)

k = 0, 1, … πk qk

(13)

∥v∗ − vπk∥∞ ≤
γk

1 − γ
+

2
(1 − γ)2

max
0≤s≤k−1

∥ε′
s∥∞ .

π,π′ q, ε′

Mπ′q = Mq q = qπ + ε′

Tvπ ≥ Tπ′vπ = Mπ′(r + γPvπ) = Mπ′qπ = Mπ′q − Mπε
′ = Mq − Mπε

′

≥ M(qπ − ∥ε′∥∞1) − Mπε
′ ≥ Mqπ − 2∥ε′∥∞1 = Tvπ − 2∥ε′∥∞1 ,
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where we used that  is linear, monotone, and that  is monotone, and both are
nonexpansions in the maximum norm.

Hence, if  is defined by  then  and the result follows from the
previous theorem. 

Putting things together gives the following planning method:

We call this method least-squares policy iteration (LSPI) for obvious reasons. Note that this
is a global planning method: The method makes no use of an input state and the parameter
vector returned can be used to get the policy  (as in the method above).

Theorem (LSPI performance): Fix an arbitrary full rank feature-map  and
let . Assume that B2  holds. Then, for any , with probability at least 

, the policy  which is greedy with respect to  is -suboptimal with

In particular, for any , choosing  so that

policy  is -optimal with

Mπ M

εk (11) ∥εk∥∞ ≤ 2∥ε′
k∥∞

■

Global planning with least-squares policy iteration

Given the feature map , find  and  as in the Kiefer-Wolfowitz theorem1 φ C ρ

Let 2 θ−1 = 0

For  do3 k = 0, 1, 2, … ,K − 1

 Roll out with policy  for  steps to get the targets  where  

 and 

4 π := πk H R̂m(z) z ∈ C

πk(s) = arg maxa⟨θk−1,φ(s, a)⟩

 Solve the weighted least-squares problem given by Eq.  to get .5 (4) θk

Return 6 θK−1

πK

φ : S × A → R
d

K,m,H ≥ 1 ε 0 ≤ ζ ≤ 1
1 − ζ πK ΦθK−1 δ

δ ≤
2(1 + √d)

(1 − γ)2
ε

approx. error

+
γK−1

1 − γ

iter. error

+
2√d

(1 − γ)3
(γH +√ log(d(d + 1)K/ζ)

2m
)

pol.eval. error

.
  

ε′ > 0 K,H,m

K ≥ Hγ,γε′/2

H ≥ H
γ,(1−γ)2ε′/(8√d) and

m ≥
32d

(1 − γ)6(ε′)2
log((d + 1)2K/ζ)

πK δ
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while the total computation cost is .

Thus, with a polynomial cost, LSPI with the specific configuration at the cost of polynomial
computation cost, but importantly, with a cost that is independent of the size of the state
space, can result in a good policy as long as , the worst-case error of approximating
action-value functions of policies using the features provided, is sufficiently small.

Proof: Note that B2  and that  is full rank implies that for any memoryless policy  there
exists a parameter vector  such that  (cf. Part 2 of Question 3 of
Assignment 2). Hence, we can use the “LSPE extrapolation error bound” (cf. ). By this
result, a union bound and of course by B2 , we get that for any , with probability
at least , for any ,

where we also used that . Call the quantity on the right-hand side in the
above inequality .

Take the event when the above inequalities hold and for now assume this event holds. By
the previous theorem,  is -optimal with

To obtain the second part of the result, we split  into two equal parts:  is set to force the
iteration error to be at most , while  and  are chosen to force the policy evaluation
error to be at most . Here, to choose  and ,  is again split into two equal parts.
The details of this calculation are left to the reader. 

Value iteration and policy iteration are specific instances of dynamic programming
methods. In general, dynamic programming refers to methods that use value functions to

δ ≤
2(1 + √d)

(1 − γ)2
ε + ε′ ,

poly( 1
1−γ

, d, A, 1
ε′ , log(1/ζ))

ε

ε Φ π

θ ∈ R
d ∥Φθ − qπ∥∞ ≤ ε

(7)

ε 0 ≤ ζ ≤ 1
1 − ζ 0 ≤ k ≤ K − 1

∥qπk − Φθk∥∞ ≤ ε(1 + √d) + √d(
γH

1 − γ
+

1
1 − γ

√ log(d(d + 1)K/ζ)
2m

) ,

|C| ≤ d(d + 1)
κ

πK δ

δ ≤
γK−1

1 − γ
+

2
(1 − γ)2

κ .

ε′ K

ε′/2 H m

ε′/2 H M ε′/2
■

Notes

Approximate Dynamic Programming (ADP)
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calculate good policies. In approximate dynamic programming the methods are modified
by introducing “errors” when calculating the values. The idea is that the origin of the errors
does not matter (e.g., whether they come due to imperfect function approximation, linear,
or nonlinear, or due to the sampling): The analysis is done in a general form. While here we
met approximate policy iteration, one can also use the same ideas as shown here to study an
approximate version of value iteration. A homework in problem set 2 asks you to study this
method, which is usualy called approximate value iteration. In an earlier homework you
were asked to study how linear programming can also be used to compute optimal value
functions. Adding approximations we then get approximate linear programming.

We note in passing that fans of neural networks should like that the general, ADP-style
results, like the theorem in the middle of this lecture, can be also applied to the case when
neural networks are used as the function approximation technique. However, one main
lesson of the lecture is that to control extrapolation errors, one should be quite careful in
how the training data is chosen. For linear prediction and least-squares fitting, optimal
design gives a complete answer, but the analog questions are completely open in the case of
nonlinear function approximation, such as neural networks. There is also a sizable
literature that connects nonparametric techniques (an analysis friendly relative of neural
networks) to ADP methods.

The idea of introducing approximate calculations has been introduced at the same time
people got interested in Markov Decision Processes in the 1960s. Hence, the literature is
quite enormous. However, the approach taken here which asks for error bounds where the
algorithmic (not approximation-) error is uniformly controlled regardless of the MDP is
quite recent and where the term that involves the approximation error is also uniformly
bounded (for a fixed dimension and discount factor).

Earlier literature often presented bounds where the magnification factor of the
approximation and the algorithmic error involved terms which depended on the MDP. Often
these came in the form of “concentrability coefficients” (and yours truly was quite busy
with working on these results a while ago). The main conclusion of this earlier analysis is
that more stochasticity in the transitions means less control, less concentrability, which is
advantageous for the ADP algorithms. While this makes sense and this indicates that these
earlier results are complementary to the results presented here, the issue is that these
results are quite pessimistic for example when the MDP is deterministic (as in this case the
concentrability coefficients can be as large as the size of the state space).

What function approximation technique to use?

Concentrability coefficients and all that jazz
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While here we emphasized the importance of using a good design to control the
extrapolation errors, in these earlier results, no optimal design was used. The upshot is that
this saves the effort of coming up with a good design, but the obvious downside is that the
extrapolation error may become uncontrolled. In the batch setting (which we will come
back to later), of course, there is no way to control the sample collection, and this is in fact
the setting where this earlier analysis was done.

A critical assumption in the analysis of API was that the approximation error is controlled
uniformly for all policies. This feels limiting. Yet, there are some interesting sufficient
conditions when this assumption is clearly satisfied. In general, these require that the
transition dynamics and the reward are both “compressible”. For example, if the MDP is
such that , the immediate reward as a function of the state-action pairs satisfies 
and the transition matrix,  satisfies  with some matrix ,
then for any policy policy ,  has a range which is a subset of 

. Since  is the fixed-point of , i.e., , it follows that  is also
necessarily in the range space of . As such,  and . MDPs that satisfy the
above two constraints are called linear in  (or sometimes, just “linear MDPs”). Exact
linearity can be relaxed: If  and , then for any policy , 

 with . Nevertheless, later we will investigate whether

this assumption can be relaxed.

It is not known whether the bound presented in the final result is tight. In fact, the
dependence of  on the  is almost certainly not tight; in similar scenarios it has
been shown in the past that replacing Hoeffding’s inequality with Bernstein’s inequality
allows the reduction of this factor. It is more interesting whether the amplification factor of

the approximation error, , is best possible. In the next lecture we will show

that the  approximation error amplification factor cannot be removed while keeping the
runtime under control. In a later lecture, we will show that the dependence on 
cannot be improved either – at least for this algorithm. However, we will see that if the
main concern is the amplification of the approximation error, while keeping the runtime
polynomial (perhaps with a higher order though) then under B2  better algorithms exist.

The careful reader would not miss that to run the proposed method one needs to find the set
 and the weighting function . The first observation here is that it is not crucial to find the

best possible  pair. The Kiefer-Wolfowitz theorem showed that with this best possible

The strength of hints
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The tightness of the bounds
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The cost of optimal experimental design
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choice, . However, if one finds a pair such that , the price of this is

that wherever  appears in the final performance bound, a submultiplicative factor of 
will also need to be introduced. This should be acceptable. In relation to this note that by
relaxing this optimality requirement, the cardinality of  can be reduced. For example, by
introducing the factor of  as suggested above allows one to reduce the cardinlity to 

; which may actually be a good tradeoff as this can save much on the runtime.

However, the question still remains of who computes these (approximately) optimal
designs and at what cost. While this calculation only needs to be done once and is
independent of the MDP (just depends on the feature map), the value of these methods
remains unclear because of this compute cost. General methods to compute approximately
optimal designs needed here are known, but their runtime for our case will be proportional
to the number of state-action pairs. In the very rare cases when simulating transitions is
very costly but the number of state-action pairs is not too high, this may be a viable option.
However, these cases are rare. For special choices of the feature-map, optimal designs may
be known. However, this reduces the general applicability of the method presented here.
Thus, a major question is whether the optimal experimental design can be avoided. What is
known is that for linear prediction with least-squares, clearly, they cannot be avoided. One
suspects that this is true more generally.

Can optimal designs be avoided while keeping the results essentially unchanged? Of
particular interest would be if the feature-map would also be only “locally explored” as the
planner interacts with the simulator. Altogether, one suspects that two factors contributed
here for the appearance of optimal experimental design: One factor is that the planner is
global: It comes up with a parameter vector that leads to a policy that can be used regardless
of the state. The other (perhaps) factor is that the approach was based on simple “patching
up” a dynamic programming algorithm with a function approximator. While this is a
common approach, controlling the extrapolation errors in this approach is critical and is
likely only possible with something like an optimal experimental design. As we shall see
soon, there are indeed approaches that avoid the optimal experimental design step and
which are based on online planning and they also deviate from the ADP approach.

The policy evaluation method presented here feels unsophisticated. It uses simple Monte-
Carlo rollouts, with truncation, averaging and least-squares regression. The reinforcement
learning literature offers many alternatives, such as the “temporal difference” learning
type methods that are based on solving the fixed point equation . One can indeed
try to use this equation to avoid the crude Monte-Carlo approach presented here, in the
hope of reducing the variance (which is currently rather crudely upper bounded using the 

g(ρ) = √d g(ρ) = 2√d

√d 2

C

2
O(d log log d)

Policy evaluation alternatives

qπ = Tπq
π
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 term in the Hoeffding bound). Rewriting the fixed point as ,
and then plugging in , we see that the trouble is that to control the
extrapolation errors, the optimal design must likely depend on the policy to be evaluated
(because of the appearance of ).

Let  and  be so that

Here,  is called the “Bellman residual” of . The policy evaluation alternatives above aim
at controlling these residuals. The reader is invited to derive the analogue of the
“approximate policy iteration” error bound in  for this scenario.

One may wonder about how critical is the presence of  in the results presented. For this, we
can say that it is not critical. Unweighted least-squares does not perform much worse.

The error bound presented for least-squares does not use the full power of randomness.
When part of the errors  with  are random, some helpful averaging effects can
appear, which we ignored for now, but which could be used in a more refined analysis.

Optimal exoerimental design is a subfield of statistics. The design considered here is just
one possibility. In fact, this design which is called G-optimal design (G stands,
uninspiringly, for the word “general”). The Kiefer-Wolfowitz theorem actually also states
that this is equivalent to the D-optimal designs.

The results presented show convergence to a ball around the optimal target. Some people
think this is a major concern. While having a convergent method may look more appealing,
as long as one controls the size of the ball, I will not be too concerned.

Similarly to what is done here, one can introduce an approximate version of value-iteration.
This is the subject of Question 3 of homework 2. While the conditions are different, the
qualitative behavior of AVI is similar to that of approximate policy iteration.

1/(1 − γ) (I − γPπ)qπ = r

qϕ = Φθ + ε

(I − γPπ)Φ

Alternative error control: Bellman residuals
(πk)k≥0 (qk, εk)k≥0

εk = qk − Tπk
qk

εk qk

(12)

The role of  in the Kiefer-Wolfowitz resultρ

ρ

Least-squares error bound

ε(z) z ∈ C

Optimal experimental design – a field on its own

Lack of convergence

Approximate value iteration (AVI)

https://rltheory.github.io/documents/assignments/assignment2.pdf
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In particular, as for approximate policy iteration, there are two steps to this proof: One is to
show that the residuals  can be controlled and the second is that if they are
controlled then the policy that is greedy with respect to (say)  is -optimal with 
controlled by . For this second part, we have the following
bound:

where . The procedure that uses least-squares fitting to get the iterates 
 is known under various names, such as least-squares value iteration (LSVI), fitted Q-

iteration (FQI), least-squares Q iteration (LSQI). This proliferation of abbreviations and
names is unfortunate, but there is not much that can be done at this stage. To add insult to
injury, when neural networks are used to represent the iterates and an incremental
stochastic gradient descent algorithm is used for “fitting” the weights of these networks by
resampling old data from a “replay buffer”, the resulting procedure is coined “Deep Q-
Networks” (training), or DQN for short.

The Kiefer-Wolfowitz theorem implies the following:

Proposition: Let  and  be such that  and 

. Then, there exist a matrix  such that for 

there exists  such that the following hold:

Proof: Let  be the -optimal design whose existence is guaranteed by the
Kiefer-Wolfowitz theorem. Let  be the underlying moment

matrix. Then, by the definition of , .

εk = qk − Tqk−1

qK δ δ

ε1:K := max1≤k≤K ∥εk∥∞

δ ≤ 2H 2(γK + ε1:K) . (14)

H = 1/(1 − γ)
(qk)k

Bounds on the parameter vector
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.3 ∥
~
θ∥2 ≤ √d

ρ : Z → [0, 1] G
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Define  and . The first property is clearly satisfied. As to the second
property,

Finally, for the third property,

finishing the proof. 

Thus, if one has access to the full feature-map then knowing that a function realized is
bounded, one may as well assume that the feature map is bounded and the parameter vector

is bounded just by .

The linear least-squares predictor given by a feature-map  and data 

predicts a response at  via  where

with

Here, by abusing notation for the sake of minimizing clutter, we use , 

. The problem is that  may not be invertible (i.e.,  may not be defined as
written above). “By continuity”, it is nearly equally problematic when  is ill-conditioned
(i.e., its minimum eigenvalue is “much smaller” than its maximum eigenvalue). In fact, this
leads to poor “generalization”. One remedy, often used, is to modify  by shifting it with a
small constant multiple of the identity matrix:

S = (dM)−1/2 ~
θ = S−1θ

∥
~
ϕ(z)∥2

2 = ∥(dM)−1/2ϕ(z)∥2
2 = ϕ(z)⊤(dM)−1ϕ(z) ≤ 1 .

∥
~
θ∥2

2 = dθ⊤ ∑
z∈supp(ρ)

ρ(z)ϕ(z)ϕ(z)⊤ θ = d ∑
z∈supp(ρ)

ρ(z)(θ⊤ϕ(z))2

≤1

≤ d ,
⎛
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■
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Regularized least-squares
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Here,  is a tuning parameter, whose value is often chosen based on cross-validation
or with a similar process. The modification guarantees that  is invertible and it overall
improves the quality of predictions, especially when  is tuned base on data.

Above, the choice of the identity matrix, while is common in the literature, is completely
arbitrary. In particular, invertibility will be guaranteed if  is replaced with any other
positive definite matrix . In fact, the matrix one should use here should be one that makes 

 small (while, say, keeping the minimum eigenvalue of  at constant). That this is the
choice that makes sense can be argued for by noting that with

the  vector defined in  is the minimizer of

and thus, the extra penalty has the least impact for the choice of  that makes the norm of 
the smallest. If we only know that , by our previous note, a good choice
is , where  where  is a -optimal design. Indeed,

with this choice, . Note also that if we apply the feature-
standardization transformation of the previous note, we have

showing that the choice of using the identity matrix is justified when the features are
standardized as in the proposition of the previous note.

We will only scratch the surface now; expect more references to be added later.

The bulk of this lecture is based on

Tor Lattimore, Csaba Szepesvári, and Gellért Weisz. 2020. “Learning with Good Feature
Representations in Bandits and in RL with a Generative Model.” ICML and
arXiv:1911.07676,
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who introduced the idea of using -optimal designs for controlling the extrapolation
errors. A very early reference on error bounds in “approximate dynamic programming” is
the following:

Whitt, Ward. 1979. “Approximations of Dynamic Programs, II.” Mathematics of
Operations Research 4 (2): 179–85.

The analysis of the generic form of approximate policy iteration is a refinement of
Proposition 6.2 from the book of Bertsekas and Tsitsiklis:

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, Massachusetts, 1996.

However, there are some differences between the “API” theorem presented here and
Proposition 6.2. In particular, the theorem presented here appears to capture all sources of
errors in a general way, while Proposition 6.2 is concerned with value function
approximation errors and errors introduced in the “greedification step”. The form adopted
here appears, for example, in Theorem 1 of a technical report of Scherrer, who also gives
earlier references:

Scherrer, Bruno. 2013. “On the Performance Bounds of Some Policy Search Dynamic
Programming Algorithms.” arxiv.

The earliest of these references is perhaps

Munos, R. 2003. “Error Bounds for Approximate Policy Iteration.” ICML.

Least-squares policy iteration appears in

Lagoudakis, M. G. and Parr, R. Least-squares policy iteration. The Journal of Machine
Learning Re-search, 4:1107–1149, 2003.

The particular form presented in this work though uses value function approximation based
on minimizing the Bellman residuals (using the so-called LSTD method).

Two books that advocate the ADP approach:

Powell, Warren B. 2011. Approximate Dynamic Programming. Solving the Curses of
Dimensionality. Hoboken, NJ, USA: John Wiley & Sons, Inc.

Lewis, Frank L., and Derong Liu. 2013. Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control. Hoboken, NJ, USA: John Wiley & Sons, Inc.
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Bertsekas, Dimitri P. 2009. “Chapter 6: Approximate Dynamic Programming,” January,
1–118.

A paper that is concerned with API and least-squares methods, but uses concentrability is:

Antos, Andras, Csaba Szepesvári, and Rémi Munos. 2007. “Learning near-Optimal Policies
with Bellman-Residual Minimization Based Fitted Policy Iteration and a Single Sample
Path.” Machine Learning 71 (1): 89–129.

Optimal experimental design has a large literature. A nice book concerned with computation
is this:

M. J. Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

The Kiefer-Wolfowitz theorem is from:

J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. Canadian Journal
of Mathematics, 12(5):363–365, 1960.

More on computation here:

E. Hazan, Z. Karnin, and R. Meka. Volumetric spanners: an efficient exploration basis for
learning. Journal of Machine Learning Research, 17(119):1–34, 2016

M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization, volume 2. Springer Science & Business Media, 2012.

The latter book is a very good general starting point for convex optimization.

That the features are standardized as shown in the notes is assumed (and discussed), e.g., in

Wang, Ruosong, Dean P. Foster, and Sham M. Kakade. 2020. “What Are the Statistical
Limits of Offline RL with Linear Function Approximation?” arXiv [cs.LG]. arXiv

which we will meet later.
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