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RL Theory

Planning in MDPs / 9. Limits of query-efficient planning

In the last lecture we have seen that given a discounted MDP , a
feature-map  and a precomputed, suitably small core set, for any 
target and any confidence parameter , interacting with a simulator of , with
at most , compute time, LSPI returns some weight vector 

 such that with probability , the policy that is greedy with respect to 
is -suboptimal with

where  is the error with which the features can approximate the action-value functions
of the policies of the MDP:

Here, following our earlier convention,  refers to the  matrix that is
obtained by stacking the feature vectors  of all possible state-action pairs on the
top of each other in some fixed order. Setting  to match the first term in Eq. , we can
keep the effort polynomial in the relevant quantities (including ), but even in the limit
of infinite computation, the best bound we can obtain is

While it makes sense that with a reasonable compute effort  cannot be better than  or a

constant multiple of , it is unclear whether the extra  factor is an artifact of
the proof. We may suspect that some power of  may be necessary, because even
if we knew the parameter vector that gives the best approximation to , the error
incurred by acting greedily with respect to  could be as large as
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However, at this point, it is completely unclear whether the extra  factor is necessary.
The main question asked in this lecture: Are the “extra” factors truly necessary in the
above bound? Or are there some other polynomial runtime algorithms that are able to
produce policies with smaller suboptimality?

In this lecture we will give a partial answer to this question: We will justify the presence of

. We start with a lower bound that shows that when there is no limit on the number of

actions, efficient algorithms are limited to .

For the statement of our results, the following definitions will be useful:

Definition (soundness): An online planner is -sound if for any finite discounted
MDP  and feature-map  such that ,
when interacting with , the planner induces a -suboptimal policy of .

Definition (memoryless planner): Call a planner memoryless if it does not retain any
information between its calls.

The announced result is as follows:

Theorem (Query lower bound: large action sets): For any , , positive
integer  and for any -sound online planner  there exists a “featurized-MDP” 

 with rewards in  with  such that when interacting with a
simulator of , the expected number of queries used by  is at least

Note that if  or smaller, the number of queries is exponential in . For the proof we
need a result that shows that one can pack the -dimensional unit sphere with
exponential in  many vectors that are nearly orthogonal. The precise result, which is
stated without proof, is as follows:
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Lemma (Johnson-Lindenstrauss (JL) Lemma) For every  and integers  such
that

then there exists  vectors of the -dimensional unit sphere such that for all 
,

Note that for a fixed dimension , the valid range for  is

In particular,  can be “exponentially large” in  when  is a constant. We can directly
relate this lemma to our feature matrices. In particular, the lemma is equivalent to the
following result:

Proposition (JL feature matrix): For any  as in the JL lemma there exists a matrix 
 such that for any ,

where  is the th basis vector of standard Euclidean basis of , and in particular if  is
the th row of ,  holds.

Proof: Choose  from the JL lemma as the rows of . Fix . Then, 
 Since by

construction  for , the statement follows. 

Finally, we need a variation of the result of Question 6 of Assignment 0. This question
asked for proving that any algorithm that identifies the single nonzero entry in a binary
array of length  requires to look at at least  entries of the array on
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expectation. A similar lower bound applies if we require the algorithm to be correct with,
say, probability :

Lemma (High-probability needle lemma): Let . Any algorithm that correctly
identifies the single nonzero entry in any binary array of length  with probability at least 

 has the property that the expected number of queries that the algorithm uses is at least 
.

In fact, if  is the worst-case expected number of queries used by an algorithm that is
correct with probability  then one can show that for , .

Proof: Left as an exercise. 

With this we are ready to give the proof of the theorem:

Proof (of the theorem): We only give a sketch.

Fix the planner  with the said properties. Let  be a positive integer to be chosen later.
We construct a feature map  and  MDPs  that share 

 and  as state and action-spaces, respectively. Here  will be chosen
as the initial state where the planners will be tested from and  will be an absorbing
state with zero reward. The MDPs share the same deterministic transition dynamics: All
actions in  end up in  with probability one and all actions taken in  end up in 
with probability one. The rewards for actions taken in  are all zero. Finally, we choose
the reward of MDP  in state  to be

where the value of  is left to be chosen later.

Then, denoting by  the action returned by the planner when called with state , one can
see that the value of the policy induced at  in MDP  is , where  is the
distribution induced by the interconnection of the planner and MDP . Thus, for 

, the planner needs to return  so that . Hence, it needs at least 
 calls by the high-probability needle lemma.
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Finally, the JL feature matrix construction allows us to construct a feature-map for this
MDP as the action-value functions take the form , 
in this MDP. 

The previous result leaves open whether query-efficient planners exist with a fixed
number of actions. Our next result shows that the problem does not get much easier in
this setting either.

The result is stated for fixed-horizon MDPs. Given an MDP , a policy ,
a positive integer  and state  of the MDP, let

be the total reward collected by  when it is used for  steps. The action-value functions 
 are defined similarly. The optimal -step value function is

The Bellman optimality operator  is defined via

The policy evaluation operator  of a memoryless policy  is

A policy  is -step optimal if . Also,  is greedy with respect to  if 
. The analogue of the fundamental theorem looks as follows:

Theorem (fixed-horizon fundamental theorem): We have  and for any , 
. Furthermore, for any  such that for ,  is greedy with

respect to , for any  it holds that  (i.e., the policy which in
step  uses , in step  uses , , in step  uses , after which it continues
arbitrarily) is -step optimal:

qπ(s, a) = I(a = i)r∗ qπ(send, a) = 0
■

A lower bound when the number of actions is constant
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Proof: Left as an exercise. Hint: Use induction. 

In the theorem our earlier notion of policies is slightly abused:  is only specified for 
steps. In any case, according to this result for a fixed horizon , the natural analogue
for memoryless policies are these -step nonstationary memoryless policies. Let us
denote the set of these by .

In the next result, we will only care about optimality with respect to a fixed initial state 
. Then, without loss of generality, we also assume that the set of states 

reachable from  in  steps are disjoint:  for  (why?). It follows
that we can also find a memoryless policy  that is optimal at : . In
fact, one can even find a memoryless policy that also satisfies

simultaneously for all . Furthermore, the same holds for the action-value
functions:

Thus, the natural analogue that all action-value functions are well-approximated with
some feature-map is that there are feature-maps  such that for 

,  and for any memoryless policy , the -step
action value function of , when restricted to , is well-approximated by the linear
combination of the basis functions induced by . Since we will not need  outside of 

, in what follows, we assume that these are restricted to . Writing  for the feature
matrix induced by  (the rows of  are the feature vectors under  for some ordering
of the state-action pairs from ), we redefine  as follows:

Since we changed the objective, we also need to change the definition of -sound
online planners: These planners now need to induce policies that are -suboptimal or
better when evaluated with the -horizon undiscounted total reward criterion from the
designated start-state  provided that the MDP satisfies . In what follows,
we call these planners -sound for the -step criterion.
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With this, we are ready to state the main result of this section:

Theorem (Query lower bound: small action sets, fixed-horizon objective): For , 
 and positive integer , let

Then, for any , , positive integers  such that  and for
any online planner  that is -sound for MDPs with at most  actions and the -
step criterion, there exists a “featurized-MDP”  with  actions and rewards in 

 such that when interacting with a simulator of , the expected number of
queries used by  is at least

provided that  (“large horizons”), while it is

otherwise (“small horizon”).

In words, if the horizon is large enough, the previous exponential-in-  lower bound
continues to hold, while for horizons that are smaller, a lower bound that is exponential

in the horizon holds. Note that above  hides logarithmic terms. Note that the
condition  is reasonable: We do not expect the feature-space dimension to be
comparable to .

Proof: Fix a planner  with the required properties. We consider  MDPs 
 that share the state space  and action space . Here, by

convention,  is a singleton with the single element , which will play the role of the
start state . The transition dynamics are also shared by these MDPs: When in state 

 and action  is taken, the next state is  when , while if 
 with some  then  and when 
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then the next state is  (ever state in  is absorbing). The
MDPs differ in their reward functions. To describe the
rewards let  be a bijection from  to .

Now, fix  and define  by 
. Let , , 

, , . Then, in MDP 
,  while  for any other state-

action pair.

Note that the optimal reward in  steps from  is  and the only policy that achieves
this reward is the one that goes through the states in . We can visualize
MDP  as a tree, as seen on the figure on the right. The green nodes on the figure
correspond to the states . Note also that  for .

We will now describe the action-value functions of the memoryless policies in  as this
will be useful later. Fix . Then, , by our convention, is defined over 

. Then, for any  and ,

Note that here . We see that for each stage ,

there is only one state-action pair such that the value of  is nonzero, and in this case
the value is in the  interval.

Now, since the planner induces a policy with suboptimality , for the action  it returns it
holds that  (any other action than  incurs zero total expected reward
in our construction). Then with  fresh calls, by taking
the action  that is returned most often in these calls, we get .
Repeating this process in state  we get action  so that

Now, repeating again the process in state  gives , etc. Eventually, we
get a sequence of actions  such that 

.
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By our previous argument (reduction to the “needle” problem), this whole process needs 
 queries. If the expected number of queries issued by  is , the expected number of

queries issued here is . Hence,

Let us now consider a choice for  such that . For 

choose first a “JL feature matrix”  such that Eq.  holds. Then let 

. Choose  if  and choose 

, otherwise. Then, by Eq. , for , 
 and for 

, . Hence,  holds if we set 
.

From Eq. ,  exists if  and

Recall that . Thus, the required claim holds for the case when  (“small

horizon case”). In the opposite case (“large horizon”), let  be the largest positive

number such that  holds. Repeating the above argument with horizon  gives the

lower bound  which finishes the proof. 

For completeness, we include a proof of the JL lemma. The proof uses the so-called
probabilistic method The idea of this is that sometimes it is easier to establish the
existence of some “good configuration” (like the nearly orthogonal vectors on the unit
sphere in the JL lemma) by establishing that such a configuration has positive probability
under some probability distribution over possible configurations.

In our case, this works as follows: Let  be random vectors, each uniformly
distributed on the -dimensional unit sphere and so that the distinct vectors in this
sequence are pairwise independent of each other. Take . If we show that 

 holds with probability at least , by a union bound over the 
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Proof of the JL lemma
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 pairs , it follows that  holds with
probability at least , from which, the lemma follows.

Thus, it remains to show that the angle between the random vectors  and  is “small”
with the claimed probability. Since the uniform distribution is rotation invariant and 
and  are independent of each other,  has the same distribution as 

. To see this take a rotation  that rotates  to ; then 
. Now, since  and  are independent of each

other,  is still uniformly distributed on the sphere, hence,  and 
share the same distribution.

A tedious calculation shows that for any ,

(The idea of proving this is to notice that if  is -dimensional standard normal variable
then  is uniformly distributed on the sphere. Then, one proceeds using
Chernoff’s method.) The result now follows from  by choosing  so that 
holds. 

The lower bound for the discounted case is missing the planning horizon. In the fixed-
horizon setting, the lower bound is again missing the horizon when the horizon is
large. It remains to be seen whether the extra “horizon terms” in Eq.  are necessary.

In any case, the main conclusion is that even when we require “strong features”, high-
accuracy planning is intractable.

The reader familiar with the TCS literature may recognize a close resemblance to
questions studied there which are concerned with the existence of
“fully polynomial time approximation schemes” (FPTAS).

There are many open questions. For one, is there a counterpart of the second theorem
for the discounted setting?

The idea of using the Johnson-Lindenstrauss lemma in this context is due to
Du, Kakade, Wang and Yang (DKWY, for short). The first theorem is a variant of a result
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P(V 2
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from this paper. The second theorem is a variation of Theorem 4.1 from the paper of Du et
al. mentioned above who prove the analoge result for global planners. The proof of the
lemma also follows the proof given in this paper. The proof of inequality  is given in a
paper of Dasgupta and Gupta, which also gives the “full version” of the Johnson-
Lindenstrauss lemma which states that logarithmically many dimensions are sufficient to
keep pairwise distances between a finite set of points.

Dasgupta, Sanjoy; Gupta, Anupam (2003), “An elementary proof of a theorem of
Johnson and Lindenstrauss” link, Random Structures & Algorithms, 22 (1): 60–65

The presentation of the first result which is for “bandits” (fixed horizon problems with 
) follows closely that of a paper by Lattimore, Weisz and yours truly. This, and a

paper by van Roy and Dong were both prompted by the DKWY paper, whose initial version

focused on the case when , which made the outlook for designing robust RL
methods quite bleak. While it is true that in this high-precision regime nothing much can
be done (unless further restricting the features), both papers emphasized that the
hardness result disappears when the algorithm can deliver  optimal policies with 

.
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