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Online learning in reinforcement learning refers to the idea that a learner is placed in an
(initially) unknown MDP. By interacting with the MDP, the learner collects data about the
unknown transition and reward function. The learner’s goal is to collect as much reward
as possible, or output a near-optimal policy. The di�erence to planning is that the learner
does not have access to the true MDP. Unlike in batch RL, the learner gets to decide what
actions to play. Importantly, this means the learner’s action a�ect the data that is
available to the learner (sometimes refered to as “closed loop”).

The fact that the learner needs to create its own data leads to an important decision:
Should the learner sacri�ce reward to collect more data that will improve decision making
in the future? Or should it act according to what seems currently best? Clearly, too much
exploration will be costly if the learner chooses actions with low reward too often. On the
other hand, playing actions that appear optimal with limited data comes at the risk of
missing out on even better rewards. In the literature, this is commonly known as
exploration-exploitation dilemma.

The exploration-exploitation dilemma is not speci�c to the MDP setting. It already arises
in the simpler (multi-armed) bandit setting (i.e. an MDP with only one state and
stochastic reward).

In the following, we focus on �nite-horizon episodic (undiscounted) MDPs
. The learner interacts with the MDP for  episodes of length .

At the beginning of each episode , an initial state is sampled from the initial
distribution . The data collected during the  episode is

where  is the action chosen by the learner at step ,  is the next

state and  is the (possibly stochastic) reward.

22. Introduction
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This model contains some important settings as a special case. Most notably,

 recovers the contextual bandit setting, where the “context”  is sampled
from the distribution 

 and  is the �nite multi-armed bandit setting.

The goal of the learner is to collect as much reward as possible. We denote

 as the reward collected by the learner in episode . The total

reward is . For the analysis it will be useful to introduce a normalization: Instead

of directly arguing about the total reward, we compare the learner to the value  of
the best policy in the MDP. This leads to the notation of regret de�ned as follows:

A learner has sublinear expected regret if  as . Sublinear regret
means that the average reward of the learner approaches the optimal value  as the
number of episodes increases. Certainly that is a desirable property!

Before we go on to construct learners with small regret, we brie�y note that there are also
other objectives. The most common alternative is PAC - which stands for probably
approximately correct. A learner is said to be -PAC if upon termination in episode ,

it outputs a policy such that  with probability at least . We have
discussed PAC bounds already in the context of planning.

The di�erence to bounding regret is that in the �rst  episodes, the learner does not
‘pay’ for choosing suboptimal actions. This is sometimes called a pure exploration
problem. Note that a learner that achieves sublinear regret can be converted into a PAC
learner (discussed in the notes). However, this may lead to a suboptimal (large)  in the
PAC framework.

There exist many ideas on how to design algorithms with small regret. We �rst note that a
“greedy” agent can easily fail: Following the best actions according to some empirical

•

•

Sample complexity and regret: How good is the learner?

-greedy
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estimate can easily get you trapped in a supoptimal policy (think of some examples where
this can happen!).

A simple remedy is to add a small amount of “forced” exploration: With (small)
probability , we choose an action uniformly at random. Thereby we eventually collect
samples from all actions to improve our estimates. With probabilty  we follow the
“greedy” choice, that is the action that appears best under our current estimates. This
gives raise to the name -greedy.

It is often possible to show that -greedy converges. By carefully choosing the exploration

probability , we may show that in �nite MDPs, the regret is at most . As
we will discuss later, there are multiple algorithms that achieve a regret of only .
Thus, -greedy is not the best algorithm to minimize regret.

Not unexpectedly, this type of exploration can be quite sub-optimal. It is easy to construct
examples, where -greedy takes exponential time (in the number of states) to reach an
optimal policy. Can you �nd an example (Hint: construct the MDP such that each time the
agent explores a suboptimal action, the agent is reset to the starting state)?

On the upside, -greedy is very simple and can easily used in more complex scenarios. In
fact, it is a popular choice when using neural network function approximations, where
theoretically grounded exploration schemes are much harder to obtain.

A popular technique to construct regret minimizing algorithms is based on optimism in
the face of uncertainty. To formally de�ne the idea, let  be the set of possible
environments (e.g. �nite MDPs). We make the realizability assumption that the true
environment  is in this set. After obtaining data in rounds , the
learner uses the observations to compute a set of plausible models . The
plausible model set is such that it contains the true model with high probabilty. Although
this is not always required, it is useful to think of a decreasing sequence of sets

. This simply means that as more data arrives, the learner
is able to exclude models that are statistically unlikely to produce the observation data.

The optimism principle is to act according to the policy that achieves the highest reward
among all plausible models, i.e.

At this point it not be clear why this leads to an e�cient learning algorithm (with small

Optimism Principle
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regret). The idea is that the learner systematically obtains data about the environment.

For example, if data contradicts the optimistic model ,

then  is excluded from the set of plausible models in the future.
Consequently, the learner chooses a di�erent policy in the next round.

On the other hand, the learner ensures that  with high probability. In this case,
it is often possible to show that the gap  is small (more speci�cally,

behaves like a statistical estimation error of order  with a leading constant that
depends on the “size” of ).

One should also ask if the optimization problem  can be solved e�ciently. This is far
from always the case. Often one needs to rely on heuristics to implement the optimistic
policy, or use other exploration techniques such as Thompson sampling (see below).

How much regret the learner has of course depends on the concrete setting at hand. In the
next lecture we will see how we can make use of optimism to design (and analyize) an
online learning algorithm for �nite MDPs. The literature has produced a large amount of
papers with algorithms that use the optimism principle in many settings. This however
does not mean that optimism is a universal tool. More recent literature has also pointed
out limitations of the optimsm principle, and in lieu proposed other design ideas.

Some other notable exploration strategies are:

Phased-Elimination and Experimental Design

Thompson Sampling

Information-Directed Sampling (IDS) and Estimation-To-Decisions (E2D)

The paper showing the details behind how to convert between Regret and PAC bounds.

Dann, C., Lattimore, T., & Brunskill, E. (2017). Unifying PAC and regret: Uniform PAC
bounds for episodic reinforcement learning. Advances in Neural Information
Processing Systems, 30. [link]

Notes

Other Exploration Techniques

•

•
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In this lecture we will analize an online learning algorithm for the �nite-horizon episodic MDP
setting. Let  be an MDP with �nite state and action spaces  and ,
unknown transition matrix , known reward function , an initial state distribution

, and length of each episode . The star-superscript in  is used to distinquish the true
environment from other (e.g. estimated) environments that occur in the algorithm and the
analysis. The assumption that the reward function  is known is for simplicity. In fact, most of the
hardness (in terms of sample complexity and designing the algorithm) comes from unknown
transition probabilities.

We will focus on the �nite-horizon setting where the learner interacts with the MDP over
 episodes of length . Most, but not all ideas translate to the in�nite-horizon

discounted or average reward settings.

Recall that the regret is de�ned as follows:

where .

The UCRL algorithm implements the optimism princple. For this we need to de�ne a set of
plausible models. First, we de�ne the maximum likelihood estimates using data from rounds

:

The de�nition makes use of the notation , and empirical counts:

23. Tabular MDPs

M = (S,A, P ∗, r, μ, H) S A

P ∗ ra(s) ∈ [0, 1]
μ H ≥ 1 P ∗

r

k = 1, … , K H ≥ 1

RK =
K

∑
k=1

v∗
0(S

(k)
0 ) − Vk

Vk = ∑H−1
h=0 r

A
(k)
h

(S
(k)
h

)

UCRL: Upper Con�dence Reinforcement Learning

1, … , k − 1

P
(k)
a (s, s′) =

Nk(s, a, s′)

1 ∨ Nk(s, a)

a ∨ b = max(a, b)
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De�ne the con�dence set

where  is a function that we will choose shortly. Our goal of choosing  is to
ensure that

The second point will appear formually in the proof, however note that from a statistical
perspective, we want the con�dence set to be as e�cient as possible.

With the con�dence set, we can now introduce the UCRL algorithm:

UCRL (Upper con�dence reinforcement learning):

In episodes ,

Note that we omitted the rewards from the observation data. Since we made the assumption that
the reward vector  is known, we can always recompute the rewards from the state and action
sequence.

For now we we also glance over the point of how to compute the optimistic policy  e�cently,
but we will get back to this point later.

Nk(s, a) = ∑
k′<k

∑
h<H

I(S
(k)
h

= s, A
(k)
h

= a)

Nk(s, a, s′) = ∑
k′<k

∑
h<H

I(S
(k)
h

= s, A
(k)
h

= a, S
(k)
h+1 = s′)

Ck,δ = {Pa(s) : ∀s, a ∥P
(k)
a (s) − Pa(s)∥1 ≤ βδ(Nk(s, a))}

βδ : N → (0, ∞) βδ

 for all  with probability at least 1 P ∗ ∈ Ck,δ k = 1, … , K 1 − δ

 is “not too large”2 Ck,δ

k = 1, … , K

Compute con�dence set 1 Ck,δ

Use policy 2 ~πk = arg maxπ maxP∈Ck,δ vπ
P

Observe episode data 3 S
(k)
0 , A

(k)
0 , S

(k)
1 , … , S

(k)
H−1, S

(k)
H−1, S

(k)
H

ra(s)

πk

Step 1: De�ning the con�dence set
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Lemma (L1-con�dence set): Let  and de�ne the con�dence

sets

Then, with probability at least ,

Proof: Let  be �xed and denote by  the next state observed upon visiting  the 
time. Assume that  was visited in total  times. Then .

The Markov property implies that  is i.i.d. Note that for any vector  we can write
the 1-norm as . Therefore

Fix some .

where in the last line we de�ned . Note that 
,  and  is an i.i.d. random variable. Therefore Hoe�ding’s inequality implies that
with probability at least ,

Next note that , therefore taking the union bound over all , we get that
with probability at least ,

In a last step, we take a union bound over ,  and . For taking the union bound
over the in�nite set of natural numbers, we can use the following simple trick. Note that

βδ(u) = 2√ S log(2)+log(u(u+1)SA/δ)
2u

Ck,δ = {Pa(s) : ∀s, a ∥P
(k)
a (s) − Pa(s)∥1 ≤ βδ(Nk(s, a))}

1 − δ

∀k ≥ 1, P ∗ ∈ Ck,δ

s, a Xv ∈ S (s, a) vth

(s, a) u Pu,a(s, s′) = 1
u
∑u

v=1 I(Xv = s′)

(Xv)u
v=1 p ∈ RS

∥p∥1 = sup∥x∥∞≤1⟨p, x⟩

∥Pu,a(s) − P ∗
a (s)∥1 = max

x∈{±1}S
⟨Pu,a(s) − P ∗

a (s), x⟩

x ∈ {±1}S

⟨Pu,a(s) − P ∗
a (s), x⟩ =

1

u

u

∑
v=1

∑
s′

xs′(I(Xv = s′) − P ∗
a (s, s′))

=
1

u

u

∑
v=1

Δv

Δv = ∑s′∈S xs′(I(Xv = s′) − P ∗
a (s, s′)) E[Δv] = 0

|Δv| ≤ 1 (Δv)u
v=1

1 − δ

1
u

u

∑
v=1

Δv ≤ 2√
log(1/δ)

2u

|{±1}S| = 2S x ∈ {±1}S

1 − δ

∥Pu,a(s) − P ∗
a (s)∥1 ≤ 2√

S log(2) + log(1/δ)

2u

s ∈ S a ∈ A u ≥ 1
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This follows from the simple obseration that  and using a telescoping sum

argument. Therefore, with probability at least , for all ,  and 

Lastly, the claim follows by noting that . 

Theorem (UCRL Regret): The regret of UCRL de�ned with con�dence sets  satis�es with
probability at least :

where . In particular, for large enough ,
surpressing constants and logarithmic factors, we get

Proof: Denote by  the UCRL policy de�ned as

Further, let  be the optimistic model.

In what follows we assume that we are on the event . By the previous lemma,
.

Fix  and decompose the (instantenous) regret in round  as follows:

∞

∑
u=1

δ

u(u + 1)
= δ

1
u(u+1) = 1

u
− 1

u+1

1 − δ u ≥ 1 s ∈ S a ∈ A

∥Pu,a(s) − P ∗
a (s)∥1 ≤ 2√

S log(2) + log(u(u + 1)SA/δ)

2u

P
(k)
a (s) = PNk(s,a),a(s) ■

Step 2: Bounding the regret

Ck,δ

1 − 3δ

RK ≤ 4cδH√SAHK + 2cδH 2SA + 3H√
HK

2
log(1/δ)

cδ = √2S log(2) + log(HK(HK + 1)SA/δ) K

RK ≤
~
O(H 3/2S√AK log(1/δ))

πk

πk = arg max
π

max
P∈Ck,δ

vπ
0,P (S

(k)
0 )

~
P (k) = arg maxP∈Ck,δ v∗

0,P (S
(k)
0 )

E = ∩k≥1Ck,δ

P(E) ≥ 1 − δ

k ≥ 1 k
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Note that we used that  which holds because by de�nition  is an

optimal policy for .

The �rst term is easily bounded. This is the crucial step that makes use of the optimism principle.

By  and the choice of  it follows that . In particular, we already eliminated the
dependence on the (unknown) optimal policy from the regret bound!

The last term is also relatively easy to control. Denote . Note that by the de�nition of

the value function we have  and . Hence  behaves like noise! If  was an

i.i.d variable we could directly apply Hoe�ding’s inequality to bound .

The sequence  has a property that allows us to obtain a similar bound. Let

be the data available to the learner at the beginning of the episode . Then by de�nition of the

value function, .

A sequence of random variables  with this property is called a martingale di�erence
sequence. Lucky for us, most properties that hold for (zero-mean) i.i.d. sequences can also be
shown for martingale di�erence sequences. The analogue result to Hoe�ding’s inequality is
called the Azuma-Hoe�ding’s inequalty. Applied to the sequence , Azuma-Hoe�dings
inequality implies that

It remains to bound term (II) in the regret decomposition:

Using the Bellman equation, we can recursively compute the value function for any policy :

v∗
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~
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(k)
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P ∗ ∈ Ck,δ
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log(1/δ)
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(k)
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(k)
0 )

π



1/7/23, 9:53 PM Tabular MDPs | RL Theory

https://rltheory.github.io/lecture-notes/online-rl/lec23/ 6/11

We introduce the following shorthand for the value di�erence of policy  under models  and

:

Let  contain all observation data up to episode  and step  including . Using the Bellman
equation, we can write

The �rst inequality uses that for any two vectors , we have  and
. Further we use that  is a deterministic policy, therefore

. The second follows from the de�nition of the con�dence set in the

previous lemma:

Telescoping and using that  yields

Note that  is another martingale di�erence sequence (with ) that can be

bounded by Azuma-Hoe�ding:

vπ
h,P = rπ + MπPvπ
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≤ ∥P ∗
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It remains to bound term . For this we make use of the following algebraic lemma:

Lemma:

For any sequence  that satis�es :

Proof of Lemma: Let .  is a concave function on . Therefore
 for all . This translates to:

The claim follows from telescoping. 

Continuing the proof of the theorem where we need to bound . Denote

. Further let

 and note that . Then

Next, using the algebraic lemma above and the fact that , we �nd

(IV)

m1, … , mk m1 + ⋯ + mk ≥ 0

K

∑
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mk

√1 ∨ (m1 + ⋯ + mk)
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f(x) = 1/√x f(x) (0, ∞)
f(A + x) ≤ f(A) + xf ′(A) A, A + x, > 0

√A + x ≤ √A +
x

2√A

■

(IV)

cδ = √2S log(2) + log(HK(HK + 1)SA/δ)
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= cδ∑
s,a

K

∑
k=1

Mk

√1 ∨ (M1 + ⋯ + Mk−1)

Mk(s, a) ≤ H



1/7/23, 9:53 PM Tabular MDPs | RL Theory

https://rltheory.github.io/lecture-notes/online-rl/lec23/ 8/11

The last inequality uses Jensen’s inequality.

Collecting all terms and taking the union bound over two applications of Azuma-Hoe�dings and
the event  completes the proof. 

In our analysis of UCRL we assumed that the reward function is known. While this is quite a
common assumption in the literature, it is mainly for simplicity. We also don’t expect the bounds
to change by much: Estimating the rewards is not harder than estimating the transition kernels.

To modify the analysis and account for unkown rewards, we �rst consider the case with
deterministic reward function , where  is some known upper bound on the
reward per step.

Embracing the idea of optimism, we de�ne reward estimates

Clearly this de�nes an optimistic estimate, . Moreover, we have

 at most  times. Therefore the regret in the previous analysis is

increased by at most .

When the reward is stochastic, we can use a maximum likelihood estimate of the reward and
construct con�dence bounds around the estimate. This way we can de�ne an optimistic reward.
Still not much changes, as the reward estimates concentrate at the same rate as the estimates of

.

K

∑
k=1
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∑
h=0

βδ(Nk(S
(k)
h , A

(k)
h )) ≤ cδ∑
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+ cδHSA

≤ 2cδ∑
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E ■

Unknown reward functions
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r
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(k)
a (s) ≥ ra(s)
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(k)
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(k)
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Computing the UCRL policy can be quite challenging. However, we can relax the construction so
that we can use backward induction. We de�ne a time-inhomogenous relaxation of the
con�dence set:

Let  be the optimistic (time-

inhomogenous) transition matrices and  the optimal policy for the

optimistic model . Then  is de�ned by the following backwards

induction:

Note that the maximum in the second line is a linear optimization with convex constraints that
can be solved e�ciently. Further, the proof of the UCRL regret still applies, because we used the
same (step-wise) relaxation in the analysis.

We can further relax the backward induction to avoid the optimization over  completely:

This leads us to the the UCBVI (upper con�dence bound value iteration) algorithm. In episode ,

UCBVI uses value iteration for the estimated transition kernel  and optimistic reward
function  to compute the policy.

UCBVI (Upper con�dence bound value iteration):

In episodes ,

UCBVI: Upper Con�dence Bound Value Iteration

C H
k,δ = Ck,δ × ⋯ × Ck,δ

H times


~
P1:H,k := (

~
P1,k, … ,

~
PH,k) = arg maxP∈C H

k,δ
v∗

P (s
(k)
0 )

πk = arg maxπ vπ
~
P1:H,k

~
P1:H,k vπk

~
P1:H,k

= v∗
~
P1:H,k

= v(k)

v
(k)
H (s) = 0 ∀s ∈ [S]

Q
(k)
h (s, a) = r(s, a) + max

P∈Ck,δ

Pa(s)v
(k)
h+1

v
(k)
h (s) = max

a
Q

(k)
h (s, a)

Ck,δ

max
P∈Ck,δ

Pa(s)v
(k)
h+1 ≤ P

(k)
a (s)v

(k)
h+1 + max

P∈Ck,δ

(Pa(s) − P
(k)
a (s))v

(k)
h+1

≤ P
(k)
a (s)v

(k)
h+1 + max

P∈Ck,δ

∥Pa(s) − P
(k)
a (s))∥1∥v

(k)
h+1∥∞

≤ P
(k)
a (s)v

(k)
h+1 + βδ(Nk(s, a))H

k

P
(k)
a (s)

ra(s) + Hβδ(Nk(s, a))

k = 1, … , K

Compute optimistic value function:1
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Note that we truncate the -function to be at most , this avoids a blow up by a factor of  in
the regret bound. Carefully checking that the previous analysis still applies shows that UCBVI has

regret at most .

By more carefully designing the reward bonuses for UCBVI, it is possible to achieve

 which matches the lower bound up to logarithmic factors in the time in-
homogeneous setting.

The original UCRL paper. Notice that they consider the in�nite horizon average reward setting,
which is di�erent from the episodic setting we present.

Auer, P., & Ortner, R. (2006). Logarithmic online regret bounds for undiscounted reinforcement
learning. Advances in neural information processing systems, 19. [link]

The UCBVI paper. Notice that they consider the homogeneous setting, which is di�erent from the
in-homogeneous setting we present.

Azar, M. G., Osband, I., & Munos, R. (2017, July). Minimax regret bounds for reinforcement
learning. In International Conference on Machine Learning (pp. 263-272). PMLR. [link]

The paper that presents the lower bound. Notice the they consider the in�nite horizon average
reward setting. Thus, there results contains a diameter term  instead of a horizon term of .

Auer, P., Jaksch, T., & Ortner, R. (2008). Near-optimal regret bounds for reinforcement learning.
Advances in neural information processing systems, 21. [link]

v
(k)
H

(s) = 0 ∀s ∈ [S]

bk(s, a) = Hβδ(Nk(s, a))

Q
(k)
h (s, a) = min(r(s, a) + bk(s, a) + P

(k)
a (s)v

(k)
h+1, H)

v
(k)
h (s) = max

a
Q

(k)
h (s, a)

Follow greedy policy 1 A
(k)
h = arg maxA Q

(k)
h (S

(k)
h , A)

Observe episode data 2 S
(k)
0 , A

(k)
0 , S

(k)
1 , … , S

(k)
H−1, S

(k)
H−1, S

(k)
H

Q
(k)
h

H H

RK ≤ O(H 2S√AK)

RK ≤
~
O(H 3/2√SAK)

Notes

References

D H
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RL Theory

Online RL / 24. Featurized MDPs

PDF Version

In tabular (�nite-horizon) MDPs , roughly speaking, the learner has
to learn about reward and transition probabilities for all states and actions in the worst-
case. This is re�ected in lower bounds on the regret that scale with  (in
the time in-homogeneous case).

In many applications the state space can be huge, and reinforcement learning is often
used together with function approximation. In such settings, we want to avoid bounds
that scale directly with the number of states . The simplest parametric models often rely
on state-action features and linearly parametrized transition and reward functions. The
goal is to obtain bounds that scale with the complexity of the function class (e.g. the
feature dimension in linear models), and are independent of  and .

Historically, many ideas for online learning in linear MDP models are borrowed from the
linear bandit model. Beyond what is written here, you may �nd it helpful to read about
stochstic linear bandits and LinUCB (see chapters 19 and 20 of the Bandit Book).

We focus on the episodic, �nite-horzion MDPs  with time in-
homogenous reward  and transition matrix . We let  be a �nite but possibly very
large state space, and  be a �nite action space. With care, most of the analysis can be
extended to in�nite state and action spaces. As before, we assume that the reward
function  is known.

We now impose additional (linear) structure on the transition kernel . For this we
assume the learner has access to features  that satisfy . In
time-inhomogeneous linear mixture MDPs, the transition kernel is of the form

for some unkown parameter  with . We remark that tabular MDPs are
recovered using , where  are the unit vectors in .

24. Featurized MDPs

M = (S,A,P , r,μ,H)

RK ≥ Ω(H 3/2√ASK)

S

S A

Linear Mixture MDPs
M = (S,A,Ph, rh,μ,H)

rh Ph S

A

rh(s, a) ∈ [0, 1]

Ph

ϕ(s, a, s′) ∈ R
d ∥ϕ(s, a, s′)∥2 ≤ 1

Ph,a(s, s′) = ⟨ϕ(s, a, s′), θ∗
h⟩

θ∗
h ∈ R

d ∥θ∗
h∥2 ≤ 1

ϕ(s, a, s′) = es,a,s′ es,a,s′ RS×A×S
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For any function , we de�ne

Note that  predicts the expected value of  when  is sampled from :

Now that we have speci�ed the parametrized model, the next step is to construct an
estimator of the unknown paramter. An estimator of  allows us to predict the value of
any policy. For the algorithm, we are particularly interested in constructing optimistic
estimates of the value function. Hence we will also need a con�dence set.

Let  be a sequence of value functions constructed up to episode . Let
 and . By constrution, we have that  and

. De�ne the regularized least-squares estimator

Let  be the idenity matrix. We have the following closed form for :

The next step is to quantify the uncertainy in the estimation. Mirroring the steps in the
tabular setting, we construct a con�dence set for .

For a positive (semi-)de�nite matrix  and vector , de�ne the (semi-)norm
. We make use of the following elliptical con�dence set for 

where

The log determinant of  can be computed online by the algorithm. For the analysis, it
is useful to further upper bound . It is possible to show the following upper bound on

 that holds independent of the data sequence:

V : S → R

ϕV (s, a) =∑
s′

ϕ(s, a, s′)V (s′) ∈ R
d

⟨ϕV (s, a), θ∗⟩ V (s′) s′ Ph,a(s)

Ph,a(s)V =∑
s′

Ph,a(s, s′)V (s′) =∑
s′

⟨ϕ(s, a, s′), θ∗
h⟩V (s′) = ⟨ϕV (s, a), θ∗

h⟩

Value Targeted Regression (VTR)

θ∗

(V
(j)
h )j<k

h≤H k − 1

ϕh,j = ϕ
V

(j)
h+1

(S
(j)
h ,A

(j)
h ) yh,j = V

(j)
h+1(S

(j)
h+1) E[yh,j] = ⟨ϕh,j, θ∗⟩

|yh,j| ≤ H

θ̂h,k = arg min
θ

k−1

∑
j=0

(⟨ϕh,j, θ⟩ − yh,j)
2

+ λ∥θ∥2

Id ∈ R
d×d θ̂h,k

θ̂h,k = Σ−1
h,k

k−1

∑
j=0

ϕh,jyh,j where Σh,k =
k−1

∑
j=0

ϕh,jϕ
⊤
h,j + λId

θ̂h,k

Σ ∈ R
d×d v ∈ R

d

∥a∥Σ = √⟨v, Σv⟩ θ̂h,k

C
(k)
h,δ = {θ : ∥θ − θ̂h,k∥2

Σh,k
≤ βh,k,δ}

β
1/2
h,k,δ = H√log det(Σh,k) − log det(Σh,0) + 2 log(1/δ) + √λ

Σh,k

βh,k,δ

βh,k,δ
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For a derivation of the above inequality see Lemma 19.4 of the Bandit Book. The next
lemma formally speci�es the con�dence probabilty.

Lemma (Online Least-Squares Con�dence) Fix some . Then

Proof: The above result is presented as Theorem 2 in Abbasi-Yadkori et al (2011), where
the proof can also be found. 

The con�dence set can be used to derive bounds on the estimation error with probability
at least  as follows:

The �rst inequality is by Cauchy-Schwarz and the second inequality uses the con�dence
bound from the previous lemma.

Similar to the tabular UCRL and UCBVI algorithms, UCRL-VTR uses the estimates  to
compute an optimistic policy. One way of obtaining an optimistic policy is from optimistic
Q-estimates  de�ned via backwards induction. Then UCRL-VTR follows the
greedy policy w.r.t. the optimistic Q-values.

UCRL-VTR

In episodes ,

β
1/2
h,k,δ ≤ H√d log(1 + k/(dλ)) + 2 log(1/δ) + √λ

0 ≤ h < H

P[θ∗
h ∈ ∩k≥1Ch,k,δ] ≥ 1 − δ

■

1 − δ

|⟨ϕV (s, a), θ̂h,k − θ∗⟩| ≤ ∥ϕV (s, a)∥Σ−1
h,k

∥θ̂h,k − θ∗∥Σh,k ≤ β
1/2
h,k,δ∥ϕV (s, a)∥Σ−1

h,k

UCRL-VTR
θ̂h,k

Q
(k)
h (s, a)

k = 1, … ,K

Set . Compute  and . Recursively de�ne optimistic value functions

For :

1 V
(k)
H (s) = 0 θ̂h,k Σh,k

h = H − 1, … , 0
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We are now in the position to state a regret bound for UCRL-VTR.

Theorem (UCRL-VTR Regret) The regret of UCRL-VTR satis�es with probability at least
:

Note that the bound scales with the feature dimension , but not the size of the state space
or action space. The lower bound for this setting is , therefore our upper
bound is tight except for a factor .

Proof:

Our proof strategy follows the same steps as in the proof of UCRL.

Step 1 (Optimism):

Taking the union bound over , the previous lemma implies that with
probability at least , for all  and all , . In the following, we

condition on this event. Using induction over , we can show that

θ̂h,k = arg min
θ

k−1

∑
j=1

(⟨ϕh,j, θ⟩ − yh,j)
2

+ λ∥θ∥2
2

Σh,k =
k

∑
j=1

ϕh,jϕ
⊤
h,j + λId

Q
(k)
h (s, a) = (rh(s, a) + ⟨ϕ

V
(k)
h+1

(s, a), θh,k⟩ + β
1/2
h,k,δ/H∥ϕ

V
(k)
h+1

(s, a)∥Σ−1
h,k
) ∧ H

V
(k)
h (s) = max

a
Q

(k)
h (s, a)

Follow greedy policy w.r.t. .

For :

Let  and .

2 Q
(k)
h (s, a)

h = 0, … ,H − 1

A
(k)
h = arg max

a∈A
Q

(k)
h (S

(k)
h , a)

ϕh,k = ϕ
V

(k)
h+1

(S (k)
h

,A(k)
h

) yh,k = V
(k)
h+1(S (k)

h+1)

1 − 2δ

RK ≤ O(dH 2 log(K)√K log(KH/δ))

d

RK ≥ Ω(dH 3/2√K)

√H

h = 0, … ,H − 1

1 − δ h ∈ [H − 1] k ≥ 0 θ∗
h ∈ C

(k)
h,δ/H

h = H,H − 1, … , 0
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Step 2 (Bellman recursion and estimation error):

For any , we �nd

The inequality is by the de�nition of  and dropping the truncation, and in the last line
we add and subtract . Further, by Cauchy-Schwarz on

the event  we get

Continuing the previous display, we �nd

where we de�ned

Recursively appliying the previous inequality and summing over all episodes yields

Note that  is a martingale di�erence sequence, hence by Azuma-Hoe�dings inequality
we have with probability at least ,

Step 3 (Cauchy-Schwarz):

Note that  is non-decreasing in both  and . Very little is lost by bounding
. From the previous step, we are left to bound the sum over uncertainties

. We start with an application of the Cauchy-Schwarz inequality. Applied to

V ∗
0 (S (k)

h ) ≤ V
(k)

0 (S (k)
h )

h = 0, … ,H − 1

V
(k)
h (S

(k)
h ) − V πk

h (S
(k)
h )

≤ ⟨ϕ
V

(k)
h+1

(S (k)
h

,A(k)
h

), θ̂h,k⟩ + β
1/2
h,k,δ/H∥ϕ

V
(k)
h+1

(S (k)
h

,A(k)
h

)∥Σ−1
h,k

− P ∗
h,A(k)

h

(S (k)
h

)V πk

h+1

= ⟨ϕ
V

(k)
h+1

(S (k)
h ,A(k)

h ), θ̂h,k − θ∗⟩ + β
1/2
h,k,δ/H∥ϕ

V
(k)
h+1

(S (k)
h ,A(k)

h )∥Σ−1
h,k

+ P ∗
h,A(k)

h

(S (k)
h )(V (k)

h+1 − V πk

h+1)

V
(k)
h

P ∗
h,A(k)

h

(S
(k)
h )V

(k)
h+1 = ⟨ϕ

V
(k)
h+1

(S
(k)
h ,A

(k)
h ), θ∗⟩

θ∗ ∈ Ck,δ/H

⟨ϕ
V

(k)
h+1

(S (k)
h

,A(k)
h

), θ̂h,k − θ∗⟩ ≤ β
1/2
h,k,δ/H∥ϕ

V
(k)
h+1

(S (k)
h

,A(k)
h

)∥Σ−1
h,k

V
(k)
h (S (k)

h ) − V πk

h (S (k)
h )

≤ 2β1/2
h,k,δ/H∥ϕ

V
(k)
h+1

(S (k)
h

,A(k)
h

)∥Σ−1
h,k

+ P ∗
h,A(k)

h

(S (k)
h

)(V (k)
h+1 − V πk

h+1)

= 2β
1/2
h,k,δ/H∥ϕ

V
(k)
h+1

(S
(k)
h ,A

(k)
h )∥Σ−1

h,k
+ V

(k)
h+1(S

(k)
h+1) − V πk

h+1(S
(k)
h+1) + ξh,k

ξh,k = (P ∗
h,A(k)

h

(S
(k)
h )(V

(k)
h+1 − V

πk

h+1))− (V (k)
h+1(S

(k)
h+1) − V

πk

h+1(S
(k)
h+1))

K

∑
k=1

V
(k)

0 (S (k)
0 ) − V πk

0 (S (k)
0 ) ≤

K

∑
k=1

H−1

∑
h=0

2β1/2
h,k,δ∥ϕh,k∥Σ−1

h,k
+ ξh,k

ξh,k

1 − δ

K

∑
k=1

H−1

∑
h=0

ξh,k ≤ H√
HK

2
log(1/δ)

βh,k,δ h k

βh,k,δ ≤ βH,K,δ

∥ϕh,k∥Σ−1
h,k
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sequences , , we have that . Applied to the regret,

we get:

Step 4 (Elliptic potential lemma):

The penultima step is to control the sum over squared uncertainties . This

classical result is sometimes refered to as the elliptic potential lemma:

The proof, as mentioned earlier, can be found as Lemma 19.4 in the Bandit Book.

Step 5 (Summing up):

It remains to chain the previous steps and take the union bound over the event where the
con�dence set contains the true parameter and the application of Azuma-Hoe�dings.

For some universal constant . This completes the proof. 

So far we have seen the linear mixture MDP model. This is not the only way one can
parameterize the transition matrix. An alternative is the linear MDP model, de�ned as
follows for features  and parameters  and :

Note that tabular MDPs are recovered using , where  are the unit vectors in
.

(ai)
n
i=1 (bi)

n
i=1 |∑n

i=1 aibi| ≤√∑n
i=1 a

2
i ∑

n
j=1 b

2
i

K

∑
k=1

H−1

∑
h=0

2β
1/2
h,k,δ∥ϕh,k∥Σ−1

h,k
≤

H−1

∑
h=0

2β
1/2
h,K,δ K

K

∑
k=1

∥ϕh,k∥2
Σ−1

h,k

⎷ ∥ϕh,k∥2
Σ−1

h,k

K

∑
k=1

∥ϕh,k∥2
Σ−1

h,k
≤ O(d log(K))

RK =
K

∑
k=1

V
(k)

0 (S (k)
0 ) − V πk

0 (S (k)
0 )

≤
K

∑
k=1

H−1

∑
h=0

(2β1/2
h,k,δ∥ϕh,k∥Σ−1

h,k
+ ξh,k)

≤ C ⋅ Hβ
1/2
H,K,δ

√d log(K)K + H 3/2√2K log(1/δ)

C ■

Linear MDPs

ϕ(s, a) ∈ R
d ψ∗

h ∈ R
d×S θ∗

h ∈ R
d

P ∗
h (s, s′) = ⟨ϕ(s, a),ψ∗

h(s′)⟩
rh(s, a) = ⟨ϕ(s, a), θ∗

h⟩

ϕ(s, a) = es,a es,a

R
S×A
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Compared to the linear mixture model, an immediate observation is that the dependence
on the the next state  is pushed into the parameter . Consequently, the
dimension of the parameter space scales with the number of states, and it is not
immediately clear how we can avoid the  dependence in the regret bounds.

Another consequence of this model is that the -function for any policy is linear in the
features .

Lemma:

Under the linear MDP assumption, for any policy  the Q-function  is linear in the
features . That is, there exist parameters  such that

Proof: The claim follows directly from the de�nition of  and the assumptions on 
and .

where we de�ned  for the last equation. 

In light of this lemma, our goal is to estimate . This can be done using least-squares
value iteration (LSVI). Let  be the data available at the

beginning of episode . Denote  and de�ne targets
 based on  estimates obtained in episodes

.

Least-squares value iteration solves the following problem:

The closed form solution is  where .

Based on the estimate , we can de�ne optimistic - and -estimates:

s′ ψh(s′) ∈ R
d

S

Q

ϕ(s, a)

π Qπ
h(s, a)

ϕ(s, a) wπ
h ∈ R

d

Qπ
h(s, a) = ⟨ϕ(s, a),wπ

h⟩

Qπ
h rh(s, a)

Ph,a(s)

Qπ
h(s, a) = rh(s, a) + Ph,a(s)V π

h+1

= ⟨ϕ(s, a), θ∗
h⟩ +∑

s′

V π
h+1(s′)⟨ϕ(s, a),ψ∗

h(s′)⟩

= ⟨ϕ(s, a),wπ
h⟩

wπ
h = θ∗

h +∑s′ ψ∗
h(s′)V π

h+1(s′) ■

wπ∗

h

{S (j)
1 ,A(j)

1 , … ,S (j)
H−1,A(j)

H−1,S (j)
H }k−1

j=1

k ϕh,j = ϕ(S
(j)
h ,A

(j)
h )

yh,j = rh(S (j)
h ,A(j)

h ) + maxa∈AQ
(j)
h+1(S (j)

h , a) Q
(j)
h+1(s, a)

j = 1, … , k − 1

ŵh,k = arg min
w∈Rd

k−1

∑
j=1

(⟨ϕj,h,w⟩ − yj,h)
2

+ λ∥w∥2
2

wh,k = Σ−1
h,k∑

k−1
j=1 ϕh,jyh,j Σh,k = ∑k−1

j=1 ϕj,hϕ
⊤
j,h + λId

ŵh,k Q V
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Assuming that the features satisfy  and the true parameters satisfy 
and  for all  with , one can choose the con�dence parameter as
follows:

This result is the key to unlock a regret bound that is independent of the size of the state
space . The proof requires a delicate covering argument. For details refer to chapter 8 of
the RL Theory Book

Algorithm: LSVI-UCB

In episodes ,

Q
(k)
h (s, a) = (⟨ϕ(s, a), ŵh,k⟩ +

~
β

1/2
k,δ ∥ϕ(s, a)∥Σ−1

h,k
) ∧ H

V
(k)
h (s) = max

a∈A
Q

(k)
h

∥ϕ(s, a)∥2 ≤ 1 ∥θ∗
h∥2 ≤ 1

∥ψ∗
hv∥2 ≤ √d v ∈ R

S ∥v∥∞ ≤ 1

~
βk,h,δ = O(d2 log(

HK

δ
))

S

LSVI-UCB

k = 1, … ,K

Initialize  for .

For , compute optimistic  estimates:

1 V
(j)
H (s) = 0 j = 1, … , k − 1

h = H − 1, … , 0 Q

yh,j = rh(S (j)
h ,A(j)

h ) + V
(j)
h+1(S (j)

h ) ∀ j = 1, … , k − 1

ϕh,j = ϕ(S (j)
h ,A(j)

h ) ∀ j = 1, … , k − 1

ŵh,k = arg min
w∈Rd

k−1

∑
j=1

(⟨ϕj,h,w⟩ − yj,h)
2

+ λ∥w∥2
2

Σh,k =
k−1

∑
j=1

ϕj,hϕ
⊤
j,h + λId

Q
(k)
h (s, a) = (⟨ϕ(s, a), ŵh,k⟩ +

~
β

1/2
k,δ ∥ϕ(s, a)∥Σ−1

h,k
) ∧ H

For , follow greedy policy2 h = 0, … ,H − 1

A
(k)
h = arg max

a∈A
Q

(k)
h (S

(k)
h , a)
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Note that computing the optimistic policy in episode  can be done in time 
by incrementally updating the least-square estimates  using the Sherman-Morrison
formula. Compared to UCRL-VTR, this avoids iteration over the state space , which is a
big advantage!

Theorem (LSVI-UCB Regret)

The regret of LSVI-UCB is bounded up to logarihmic factors and with probability at least
 as follows:

Proof: The proof idea follows a similar strategy as the proof we presented for UCRL-VTR.
As mentioned before, the crux is to show a con�dence bound for LSVI that is indepenent
of the size of the state space. For details, we again refer you to chapter 8 of the RL Theory
Book. 

The UCRL-VTR  algorithm is computationally e�cient and able to obtain a regret upper
bound of , and  in the episodic and discounted, in�nite horizon
setting respectively. These results rely on using bernstein-type bounds.

A careful reader might have noticed that the regret bound for LSVI-UCB, , is
not tight with the tabular lower bound, . The di�erence is in a factor of . The
Eleanor algorithm (Algorithm 1 in Zanette et al (2020)) is able to shave of the factor of ,
obtaining a regret upper bound of . However, it is not currently known if the
alogrithm can be implemented in a computationally e�cient way. The Eleanor algorithm
operates under the assumption of low inherent Bellman error (De�nition 1 in Zanette et al
(2020)), which means the function class is approximately closed under the Bellman
optimality operator. It is interesting to note that this assumption is more general than the
Linear MDP, thus Eleanor is also able to operate under the Linear MDP assumption.

k O(Hd2 + HAd)

ŵh,k

S

1 − δ

RK ≤
~
O(d3/2H 2√K)

■

Notes

Bernstein-type bounds for VTR (UCRL-VTR )+

+

O(dH√K) O(d√T (1 − γ)−1.5)

Better regret bounds for Linear MDPs (Eleanor)?
~
O(d3/2H 2√K)

Ω(d√K) √d

√d
~
O(dH 2√K)
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