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In this lecture we will analize an online learning algorithm for the finite-horizon episodic MDP
setting. Let  be an MDP with finite state and action spaces  and ,
unknown transition matrix , known reward function , an initial state distribution

, and length of each episode . The star-superscript in  is used to distinquish the true
environment from other (e.g. estimated) environments that occur in the algorithm and the
analysis. The assumption that the reward function  is known is for simplicity. In fact, most of the
hardness (in terms of sample complexity and designing the algorithm) comes from unknown
transition probabilities.

We will focus on the finite-horizon setting where the learner interacts with the MDP over
 episodes of length . Most, but not all ideas translate to the infinite-horizon

discounted or average reward settings.

Recall that the regret is defined as follows:

where .

The UCRL algorithm implements the optimism princple. For this we need to define a set of
plausible models. First, we define the maximum likelihood estimates using data from rounds

:

The definition makes use of the notation , and empirical counts:
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Define the confidence set

where  is a function that we will choose shortly. Our goal of choosing  is to
ensure that

The second point will appear formually in the proof, however note that from a statistical
perspective, we want the confidence set to be as efficient as possible.

With the confidence set, we can now introduce the UCRL algorithm:

UCRL (Upper confidence reinforcement learning):

In episodes ,

Note that we omitted the rewards from the observation data. Since we made the assumption that
the reward vector  is known, we can always recompute the rewards from the state and action
sequence.

For now we we also glance over the point of how to compute the optimistic policy  efficently,
but we will get back to this point later.

Nk(s, a) = ∑
k′<k

∑
h<H

I(S
(k)
h

= s, A
(k)
h

= a)

Nk(s, a, s′) = ∑
k′<k

∑
h<H

I(S
(k)
h

= s, A
(k)
h

= a, S
(k)
h+1 = s′)

Ck,δ = {Pa(s) : ∀s, a ∥P
(k)
a (s) − Pa(s)∥1 ≤ βδ(Nk(s, a))}

βδ : N → (0, ∞) βδ

 for all  with probability at least 1 P ∗ ∈ Ck,δ k = 1, … , K 1 − δ

 is “not too large”2 Ck,δ

k = 1, … , K

Compute confidence set 1 Ck,δ

Use policy 2 ~πk = arg maxπ maxP∈Ck,δ vπ
P

Observe episode data 3 S
(k)
0 , A

(k)
0 , S

(k)
1 , … , S

(k)
H−1, S

(k)
H−1, S

(k)
H

ra(s)

πk

Step 1: Defining the confidence set
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Lemma (L1-confidence set): Let  and define the confidence

sets

Then, with probability at least ,

Proof: Let  be fixed and denote by  the next state observed upon visiting  the 
time. Assume that  was visited in total  times. Then .

The Markov property implies that  is i.i.d. Note that for any vector  we can write
the 1-norm as . Therefore

Fix some .

where in the last line we defined . Note that 
,  and  is an i.i.d. random variable. Therefore Hoeffding’s inequality implies that
with probability at least ,

Next note that , therefore taking the union bound over all , we get that
with probability at least ,

In a last step, we take a union bound over ,  and . For taking the union bound
over the infinite set of natural numbers, we can use the following simple trick. Note that
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This follows from the simple obseration that  and using a telescoping sum

argument. Therefore, with probability at least , for all ,  and 

Lastly, the claim follows by noting that . 

Theorem (UCRL Regret): The regret of UCRL defined with confidence sets  satisfies with
probability at least :

where . In particular, for large enough ,
surpressing constants and logarithmic factors, we get

Proof: Denote by  the UCRL policy defined as

Further, let  be the optimistic model.

In what follows we assume that we are on the event . By the previous lemma,
.

Fix  and decompose the (instantenous) regret in round  as follows:

∞

∑
u=1

δ

u(u + 1)
= δ

1
u(u+1) = 1

u
− 1

u+1

1 − δ u ≥ 1 s ∈ S a ∈ A

∥Pu,a(s) − P ∗
a (s)∥1 ≤ 2√

S log(2) + log(u(u + 1)SA/δ)

2u

P
(k)
a (s) = PNk(s,a),a(s) ■

Step 2: Bounding the regret
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Note that we used that  which holds because by definition  is an

optimal policy for .

The first term is easily bounded. This is the crucial step that makes use of the optimism principle.

By  and the choice of  it follows that . In particular, we already eliminated the
dependence on the (unknown) optimal policy from the regret bound!

The last term is also relatively easy to control. Denote . Note that by the definition of

the value function we have  and . Hence  behaves like noise! If  was an

i.i.d variable we could directly apply Hoeffding’s inequality to bound .

The sequence  has a property that allows us to obtain a similar bound. Let

be the data available to the learner at the beginning of the episode . Then by definition of the

value function, .

A sequence of random variables  with this property is called a martingale difference
sequence. Lucky for us, most properties that hold for (zero-mean) i.i.d. sequences can also be
shown for martingale difference sequences. The analogue result to Hoeffding’s inequality is
called the Azuma-Hoeffding’s inequalty. Applied to the sequence , Azuma-Hoeffdings
inequality implies that

It remains to bound term (II) in the regret decomposition:

Using the Bellman equation, we can recursively compute the value function for any policy :
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We introduce the following shorthand for the value difference of policy  under models  and

:

Let  contain all observation data up to episode  and step  including . Using the Bellman
equation, we can write

The first inequality uses that for any two vectors , we have  and
. Further we use that  is a deterministic policy, therefore

. The second follows from the definition of the confidence set in the

previous lemma:

Telescoping and using that  yields
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It remains to bound term . For this we make use of the following algebraic lemma:

Lemma:

For any sequence  that satisfies :

Proof of Lemma: Let .  is a concave function on . Therefore
 for all . This translates to:

The claim follows from telescoping. 

Continuing the proof of the theorem where we need to bound . Denote
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The last inequality uses Jensen’s inequality.

Collecting all terms and taking the union bound over two applications of Azuma-Hoeffdings and
the event  completes the proof. 

In our analysis of UCRL we assumed that the reward function is known. While this is quite a
common assumption in the literature, it is mainly for simplicity. We also don’t expect the bounds
to change by much: Estimating the rewards is not harder than estimating the transition kernels.

To modify the analysis and account for unkown rewards, we first consider the case with
deterministic reward function , where  is some known upper bound on the
reward per step.

Embracing the idea of optimism, we define reward estimates

Clearly this defines an optimistic estimate, . Moreover, we have

 at most  times. Therefore the regret in the previous analysis is

increased by at most .

When the reward is stochastic, we can use a maximum likelihood estimate of the reward and
construct confidence bounds around the estimate. This way we can define an optimistic reward.
Still not much changes, as the reward estimates concentrate at the same rate as the estimates of
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Computing the UCRL policy can be quite challenging. However, we can relax the construction so
that we can use backward induction. We define a time-inhomogenous relaxation of the
confidence set:

Let  be the optimistic (time-

inhomogenous) transition matrices and  the optimal policy for the

optimistic model . Then  is defined by the following backwards

induction:

Note that the maximum in the second line is a linear optimization with convex constraints that
can be solved efficiently. Further, the proof of the UCRL regret still applies, because we used the
same (step-wise) relaxation in the analysis.

We can further relax the backward induction to avoid the optimization over  completely:

This leads us to the the UCBVI (upper confidence bound value iteration) algorithm. In episode ,

UCBVI uses value iteration for the estimated transition kernel  and optimistic reward
function  to compute the policy.

UCBVI (Upper confidence bound value iteration):

In episodes ,

UCBVI: Upper Confidence Bound Value Iteration
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Compute optimistic value function:1
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Note that we truncate the -function to be at most , this avoids a blow up by a factor of  in
the regret bound. Carefully checking that the previous analysis still applies shows that UCBVI has

regret at most .

By more carefully designing the reward bonuses for UCBVI, it is possible to achieve

 which matches the lower bound up to logarithmic factors in the time in-
homogeneous setting.

The original UCRL paper. Notice that they consider the infinite horizon average reward setting,
which is different from the episodic setting we present.

Auer, P., & Ortner, R. (2006). Logarithmic online regret bounds for undiscounted reinforcement
learning. Advances in neural information processing systems, 19. [link]

The UCBVI paper. Notice that they consider the homogeneous setting, which is different from the
in-homogeneous setting we present.

Azar, M. G., Osband, I., & Munos, R. (2017, July). Minimax regret bounds for reinforcement
learning. In International Conference on Machine Learning (pp. 263-272). PMLR. [link]

The paper that presents the lower bound. Notice the they consider the infinite horizon average
reward setting. Thus, there results contains a diameter term  instead of a horizon term of .

Auer, P., Jaksch, T., & Ortner, R. (2008). Near-optimal regret bounds for reinforcement learning.
Advances in neural information processing systems, 21. [link]
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