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In tabular (�nite-horizon) MDPs , roughly speaking, the learner has
to learn about reward and transition probabilities for all states and actions in the worst-
case. This is re�ected in lower bounds on the regret that scale with  (in
the time in-homogeneous case).

In many applications the state space can be huge, and reinforcement learning is often
used together with function approximation. In such settings, we want to avoid bounds
that scale directly with the number of states . The simplest parametric models often rely
on state-action features and linearly parametrized transition and reward functions. The
goal is to obtain bounds that scale with the complexity of the function class (e.g. the
feature dimension in linear models), and are independent of  and .

Historically, many ideas for online learning in linear MDP models are borrowed from the
linear bandit model. Beyond what is written here, you may �nd it helpful to read about
stochstic linear bandits and LinUCB (see chapters 19 and 20 of the Bandit Book).

We focus on the episodic, �nite-horzion MDPs  with time in-
homogenous reward  and transition matrix . We let  be a �nite but possibly very
large state space, and  be a �nite action space. With care, most of the analysis can be
extended to in�nite state and action spaces. As before, we assume that the reward
function  is known.

We now impose additional (linear) structure on the transition kernel . For this we
assume the learner has access to features  that satisfy . In
time-inhomogeneous linear mixture MDPs, the transition kernel is of the form

for some unkown parameter  with . We remark that tabular MDPs are
recovered using , where  are the unit vectors in .

24. Featurized MDPs

M = (S,A,P , r,μ,H)

RK ≥ Ω(H 3/2√ASK)

S

S A

Linear Mixture MDPs
M = (S,A,Ph, rh,μ,H)

rh Ph S

A

rh(s, a) ∈ [0, 1]

Ph

ϕ(s, a, s′) ∈ R
d ∥ϕ(s, a, s′)∥2 ≤ 1

Ph,a(s, s′) = ⟨ϕ(s, a, s′), θ∗
h⟩

θ∗
h ∈ R

d ∥θ∗
h∥2 ≤ 1

ϕ(s, a, s′) = es,a,s′ es,a,s′ RS×A×S
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For any function , we de�ne

Note that  predicts the expected value of  when  is sampled from :

Now that we have speci�ed the parametrized model, the next step is to construct an
estimator of the unknown paramter. An estimator of  allows us to predict the value of
any policy. For the algorithm, we are particularly interested in constructing optimistic
estimates of the value function. Hence we will also need a con�dence set.

Let  be a sequence of value functions constructed up to episode . Let
 and . By constrution, we have that  and

. De�ne the regularized least-squares estimator

Let  be the idenity matrix. We have the following closed form for :

The next step is to quantify the uncertainy in the estimation. Mirroring the steps in the
tabular setting, we construct a con�dence set for .

For a positive (semi-)de�nite matrix  and vector , de�ne the (semi-)norm
. We make use of the following elliptical con�dence set for 

where

The log determinant of  can be computed online by the algorithm. For the analysis, it
is useful to further upper bound . It is possible to show the following upper bound on

 that holds independent of the data sequence:

V : S → R

ϕV (s, a) =∑
s′

ϕ(s, a, s′)V (s′) ∈ R
d

⟨ϕV (s, a), θ∗⟩ V (s′) s′ Ph,a(s)

Ph,a(s)V =∑
s′

Ph,a(s, s′)V (s′) =∑
s′

⟨ϕ(s, a, s′), θ∗
h⟩V (s′) = ⟨ϕV (s, a), θ∗

h⟩

Value Targeted Regression (VTR)
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For a derivation of the above inequality see Lemma 19.4 of the Bandit Book. The next
lemma formally speci�es the con�dence probabilty.

Lemma (Online Least-Squares Con�dence) Fix some . Then

Proof: The above result is presented as Theorem 2 in Abbasi-Yadkori et al (2011), where
the proof can also be found. 

The con�dence set can be used to derive bounds on the estimation error with probability
at least  as follows:

The �rst inequality is by Cauchy-Schwarz and the second inequality uses the con�dence
bound from the previous lemma.

Similar to the tabular UCRL and UCBVI algorithms, UCRL-VTR uses the estimates  to
compute an optimistic policy. One way of obtaining an optimistic policy is from optimistic
Q-estimates  de�ned via backwards induction. Then UCRL-VTR follows the
greedy policy w.r.t. the optimistic Q-values.

UCRL-VTR

In episodes ,

β
1/2
h,k,δ ≤ H√d log(1 + k/(dλ)) + 2 log(1/δ) + √λ

0 ≤ h < H

P[θ∗
h ∈ ∩k≥1Ch,k,δ] ≥ 1 − δ

■

1 − δ

|⟨ϕV (s, a), θ̂h,k − θ∗⟩| ≤ ∥ϕV (s, a)∥Σ−1
h,k

∥θ̂h,k − θ∗∥Σh,k ≤ β
1/2
h,k,δ∥ϕV (s, a)∥Σ−1

h,k

UCRL-VTR
θ̂h,k

Q
(k)
h (s, a)

k = 1, … ,K

Set . Compute  and . Recursively de�ne optimistic value functions

For :

1 V
(k)
H (s) = 0 θ̂h,k Σh,k

h = H − 1, … , 0
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We are now in the position to state a regret bound for UCRL-VTR.

Theorem (UCRL-VTR Regret) The regret of UCRL-VTR satis�es with probability at least
:

Note that the bound scales with the feature dimension , but not the size of the state space
or action space. The lower bound for this setting is , therefore our upper
bound is tight except for a factor .

Proof:

Our proof strategy follows the same steps as in the proof of UCRL.

Step 1 (Optimism):

Taking the union bound over , the previous lemma implies that with
probability at least , for all  and all , . In the following, we

condition on this event. Using induction over , we can show that
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Step 2 (Bellman recursion and estimation error):

For any , we �nd

The inequality is by the de�nition of  and dropping the truncation, and in the last line
we add and subtract . Further, by Cauchy-Schwarz on

the event  we get

Continuing the previous display, we �nd

where we de�ned

Recursively appliying the previous inequality and summing over all episodes yields

Note that  is a martingale di�erence sequence, hence by Azuma-Hoe�dings inequality
we have with probability at least ,

Step 3 (Cauchy-Schwarz):

Note that  is non-decreasing in both  and . Very little is lost by bounding
. From the previous step, we are left to bound the sum over uncertainties

. We start with an application of the Cauchy-Schwarz inequality. Applied to
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sequences , , we have that . Applied to the regret,

we get:

Step 4 (Elliptic potential lemma):

The penultima step is to control the sum over squared uncertainties . This

classical result is sometimes refered to as the elliptic potential lemma:

The proof, as mentioned earlier, can be found as Lemma 19.4 in the Bandit Book.

Step 5 (Summing up):

It remains to chain the previous steps and take the union bound over the event where the
con�dence set contains the true parameter and the application of Azuma-Hoe�dings.

For some universal constant . This completes the proof. 

So far we have seen the linear mixture MDP model. This is not the only way one can
parameterize the transition matrix. An alternative is the linear MDP model, de�ned as
follows for features  and parameters  and :

Note that tabular MDPs are recovered using , where  are the unit vectors in
.
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Compared to the linear mixture model, an immediate observation is that the dependence
on the the next state  is pushed into the parameter . Consequently, the
dimension of the parameter space scales with the number of states, and it is not
immediately clear how we can avoid the  dependence in the regret bounds.

Another consequence of this model is that the -function for any policy is linear in the
features .

Lemma:

Under the linear MDP assumption, for any policy  the Q-function  is linear in the
features . That is, there exist parameters  such that

Proof: The claim follows directly from the de�nition of  and the assumptions on 
and .

where we de�ned  for the last equation. 

In light of this lemma, our goal is to estimate . This can be done using least-squares
value iteration (LSVI). Let  be the data available at the

beginning of episode . Denote  and de�ne targets
 based on  estimates obtained in episodes

.

Least-squares value iteration solves the following problem:

The closed form solution is  where .

Based on the estimate , we can de�ne optimistic - and -estimates:
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Assuming that the features satisfy  and the true parameters satisfy 
and  for all  with , one can choose the con�dence parameter as
follows:

This result is the key to unlock a regret bound that is independent of the size of the state
space . The proof requires a delicate covering argument. For details refer to chapter 8 of
the RL Theory Book

Algorithm: LSVI-UCB
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ŵh,k = arg min
w∈Rd

k−1

∑
j=1

(⟨ϕj,h,w⟩ − yj,h)
2

+ λ∥w∥2
2

Σh,k =
k−1

∑
j=1

ϕj,hϕ
⊤
j,h + λId

Q
(k)
h (s, a) = (⟨ϕ(s, a), ŵh,k⟩ +
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Note that computing the optimistic policy in episode  can be done in time 
by incrementally updating the least-square estimates  using the Sherman-Morrison
formula. Compared to UCRL-VTR, this avoids iteration over the state space , which is a
big advantage!

Theorem (LSVI-UCB Regret)

The regret of LSVI-UCB is bounded up to logarihmic factors and with probability at least
 as follows:

Proof: The proof idea follows a similar strategy as the proof we presented for UCRL-VTR.
As mentioned before, the crux is to show a con�dence bound for LSVI that is indepenent
of the size of the state space. For details, we again refer you to chapter 8 of the RL Theory
Book. 

The UCRL-VTR  algorithm is computationally e�cient and able to obtain a regret upper
bound of , and  in the episodic and discounted, in�nite horizon
setting respectively. These results rely on using bernstein-type bounds.

A careful reader might have noticed that the regret bound for LSVI-UCB, , is
not tight with the tabular lower bound, . The di�erence is in a factor of . The
Eleanor algorithm (Algorithm 1 in Zanette et al (2020)) is able to shave of the factor of ,
obtaining a regret upper bound of . However, it is not currently known if the
alogrithm can be implemented in a computationally e�cient way. The Eleanor algorithm
operates under the assumption of low inherent Bellman error (De�nition 1 in Zanette et al
(2020)), which means the function class is approximately closed under the Bellman
optimality operator. It is interesting to note that this assumption is more general than the
Linear MDP, thus Eleanor is also able to operate under the Linear MDP assumption.
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O(d3/2H 2√K)

■

Notes

Bernstein-type bounds for VTR (UCRL-VTR )+

+

O(dH√K) O(d√T (1 − γ)−1.5)

Better regret bounds for Linear MDPs (Eleanor)?
~
O(d3/2H 2√K)

Ω(d√K) √d

√d
~
O(dH 2√K)
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https://arxiv.org/pdf/2003.00153.pdf
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The UCRL-VTR paper.
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