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Hello everyone and welcome to CMPUT 605: Theoretical Foundations of Reinforcement Learning
at the University of Alberta. We are very excited to be teaching this course and hope that you are
excited to journey with us through reinforcement learning theory. The course will cover two sub-
topics of RL theory: (1) Planning, and (2) Online RL:

Planning refers to the problem of computing plans, or policies, or just action by interacting
with some model.

Online RL refers to the problem of coming up with actions that maximize total reward while
interacting with an environment.

In all of these subproblems, we will use Markov Decision Processes, to describe how either the
simulation models, or the environments work. Thus, we start by introducing the formal de�nition
of a Markov Decision Process (MDP).

A Markov Decision Process is a mathematical model for modelling sequential decision making in
an environment that undergoes stochastic transitions. An MDP consists of the following elements:
states, actions, rules of stochastic transitions between states, rewards, and an objective, which we
take for now to be the discounted total expected reward, or return.

States are considered to be primitive thus we do not explicitly de�ne what they are. The set of
states will be denoted by . Actions are also primitive and their set is denoted by . For simplicity,
we assume that both sets are �nite. We will let the number of states be denoted by , and similarly,
we let the number of actions be denoted by . Stochastic transitions between states  and  are
the result of choosing some action  in a given state. For a �xed state  and action , the
probabilities of landing in the various states  is collected into a probability vector, which is
denoted by . To minimize clutter, by slightly abusing notation, we will write  as the

 component of this probability vector. This is the probability that the process will transition
into state , when in state  it takes action .
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Rewards are scalars and the reward incurred as a result of taking action  in state  is denoted by
. Since the number of states and actions are �nite, there is no loss in generality by assuming

that all the rewards belong to the  interval. Taking action  at time step  gives rise to an
in�nitely long trajectory of state-action pairs : here,  is the state that
results from taking action  in time step  and the assumption is that as long as  is chosen
based on the “past” only, the distribution of  given  is solely determined by

, and, in particular, -almost surely,

The objective is to �nd a way of choosing the actions that result in the largest possible return along
the trajectories that arise. The return along a trajectory is de�ned as

where  is the discount factor. Formally, a (discounted) MDP will thus be described by the
-tuple , where  and  collect the transitions and

the rewards, respectively.

Note that  makes it so that the future reward does not matter as much as the present reward. Also,
if we truncate the above sum after  terms, by our assumption on the rewards, the di�erence
between the return and the truncated return is between zero and

by using the summation rule for geometric series. Solving for the largest  under which the above
upper bound on the di�erence is below , we get that this bound on the di�erence holds as long as

 satis�es

For  satisfying this, the return is maximized already when considering only the �rst  time
steps.

Notice that the critical value of  depends on not only  but also . For a �xed , this critical value
is called the e�ective horizon.

Oftentimes, for the sake of simplicity, we replace  with the following quantity:
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(In fact, the literature often calls the latter the e�ective horizon). This quantity is an upper bound
on . Furthermore, it is not hard to verify that the relative di�erence between these two

quantities is of order  as . Thus,  behaves the same as  up to a �rst-order

approximation as . Since we are typically interested in this regime (large horizons), there is
no loss in switching from  to .

The discounted setting may occasionally feel a bit cringey. Where is the discount factor coming
from? One approach is to think about how many time steps in the future we think the optimization
should look into for some level of desired accuracy and then work backwards to set  so that the
resulting e�ective horizon matches our expectation. However, it is more honest to admit that the
discounted objective may not faithfully capture the nature of a decision problem. Indeed, there are
other objectives that one can consider, such as the �nite horizon, undiscounted (or discounted)
setting, the in�nite horizon setting with no discounting (“total reward”), or the in�nite horizon
with the average reward. All these have their own pros and cons and we will consider some of these
objectives and their relationships in future lectures. For now, we will stick to the discounted
objective for pedagogical reasons: the math underlying the discounted objective is simple and
elegant. Also, many results transfer to the other settings mentioned, perhaps with some extra
conditions, or a little change.

A policy is a rule that describes how the actions should be taken in light of the past. Here, the past
at time step  is de�ned as

which is the sequence of state-action pairs leading up to the state of the process at the current
time step . We allow policies to randomize. As such, formally, a policy becomes an in�nite
sequence  of maps of histories to distributions over actions. For a (�nite) set  let

 denote the set of probability distributions over . These probability distributions are
uniquely determined by what probability they assign to the individual elements of . Hence, they
will be identi�ed with the probability vectors with  components, each component giving the
probability of some . If , we use both  and  to denote this probability
(whichever is more convenient).

With this, we can write that the th “rule” in , which will be used in the th time step to come up
with the action for that time step, as
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where

Note that . Intuitively, following a policy  means that in time step , the distribution
of the action  to be chosen for that timestep is : the probability that  is .
Since writing  is quite cumbersome, we abuse notation and will write  instead.
Thus, when following a policy , in time step  we get that, -almost surely,

When a policy is interconnected with an MDP, the interconnection, together with an initial
distribution  over the states, uniquely determines a distribution over the in�nite-long
trajectories

such that for every time step , both  and  hold, in addition to that

In fact, this distribution could be over some potentially bigger probability space, in which case
uniqueness does not hold. When we want to be speci�c and take the distribution that is de�ned
over the in�nite-long state-action trajectories, we will say that this is the distribution over the
canonical probability space induced by the interconnection of the policy and the MDP.

To emphasize the dependence of the probability distribution  on  and , we will often use ,

but we will also take the liberty to drop any of these indices when its identity can be uniquely
deduced from the context. When needed, the expectation operator corresponding to  (or ) will

be denoted by  (respectively, ).

What is the probability assigned to a trajectory ? Let
. Recall that . By a repeated

application of the chain rule of probabilities, we get

Ht = (S ×A)t−1 × S .
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https://en.wikipedia.org/wiki/Chain_rule_(probability)
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Collecting the terms,

Similarly,

The total expected discounted reward, or the expected return of policy  in MDP  when the
initial state is sampled from  is

When  where  is the “Dirac” probability distribution that puts a point mass at , we use
 to denote the resulting value. Since this assigns a value to every state,  can be viewed as a

function assigning a value to every state in . This function will be called the value function of
policy . When the dependence on the MDP is important, we may add “in MDP ” and denote the
dependence by introducing an index: .

The best possible value in state  that can be obtained by optimizing over all possible policies
is

Then, , viewed as a function, is called the optimal value function. A policy is optimal in
state  if . A policy is uniformly optimal if it is optimal in every state. In what
follows, we will drop uniformly as we will usually be interested in �nding uniformly optimal
policies.

Given an MDP, we are interested in e�ciently computing an optimal policy.

P(Ht = ht)
= P(S0 = s0,A0 = a0,S1 = s1, … ,St = st)
= P(St = st|Ht−1 = ht−1,At−1 = at−1)P(Ht−1 = ht−1,At−1 = at−1)
= Pat−1

(st−1, st)P(Ht−1 = ht−1,At−1 = at−1)
= Pat−1

(st−1, st)P(At−1 = at−1|Ht−1 = ht−1)P(Ht−1 = ht−1)
= Pat−1(st−1, st)πt−1(at−1|ht−1)P(Ht−1 = ht−1)

⋮
= Pat−1(st−1, st)πt−1(at−1|ht−1) × ⋯ × Pa0(s0, s1)π0(a0|s0)P(S0 = s0)
= Pat−1(st−1, st)πt−1(at−1|ht−1) × ⋯ × Pa0(s0, s1)π0(a0|s0)μ(s0) .
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Computing an optimal policy can be seen as a planning problem: the optimal policy answers the
question of how to take actions so that the expected return is maximized. This is also an
algorithmic problem. The input, in the simplest case, is a big table (or a number of tables) that
describes the transition probabilities and rewards. The interest is to develop algorithms that read
in this table and then as output should return a description of an optimal policy. At this stage, it
may seem unlikely that an e�cient algorithm could do this: in the above unrestricted form,
policies have an in�nite description. As we shall �nd out soon though, we will be lucky with �nite
MDPs as in such MDPs one can always �nd optimal policies that have a short description. Then,
the algorithmic question becomes interesting!

As for any algorithmic problem, the main question is how many elementary computational steps
are necessary to solve an MDP? As can be suspected, the number of steps will need to scale with the
number of states and actions. Indeed, even the size of the input scales with these. If computation
indeed needs to scale with the number of state-action pairs, is there still any reason to consider
this problem given that the number of states and actions in MDPs that one typically encounters in
practical problems is astronomically large, if not in�nite? Yes, there are:

Not all MDPs are in fact large and it may be useful to know what it takes to “solve” a small MDP.
Good solvers for “small” MDPs may serve as benchmarks for solvers developed for the “large
MDP” case.

Even if a problem is large (or in�nite), one may be able to approximate it well with a small MDP.
Then, a solver for a small MDP may be useful.

Some ideas and tools developed for this problem also generalize (perhaps) with some twists to
the “large” MDP setting.

At this stage, the reader may be wondering about what is meant by “small” and “large”? As a
rough guideline, by “small” we mean problems where the tables describing the MDP (and/or
policy) comfortably �t in the memory of whatever computer one has access to. Large is everything
else.

Based on the above calculations, one expects that the probability of a trajectory
 that never ends is

Planning=Computation

•

•

•

Miscellaneous Remarks

Probabilities of in�nite long trajectories?

τ = (s0, a0, s1, a1, …)
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where  as before. However, this does not work: if in the trajectory,
each action is taken with probability  by the policy on the given history, the in�nite product on
the right-hand side is zero! This should make one pause at least for a moment: how is then  even
de�ned? Does this distribution even exist? If yes, and it assigns zero probability to trajectories like
above, could not it be that it assigns zero to all the trajectories of in�nite length? In the world of
in�nite, one must tread carefully! The way out of this conundrum is that we must use measure
theoretic probabilities, or we need to give up on objects like the return, ,
which is de�ned on trajectories of in�nite length. The alternative to measure theoretical
probability is to de�ne everything through by taking limits (and always taking expectations over
�nite-length pre�xes of the in�nite long trajectories). As this would be quite cumbersome, we will
take the measure-theoretic route, which will be explained in the next lecture.

Equation  tells us that the only thing that matters from the history of the process as far as the
prediction of the next state is concerned is the last action and the last state. This is known as the
Markov property. More generally, Markov chains, which are speci�c stochastic processes, have a
similar property.

Richard Bellman, who has made many foundational contributions to the early theory, coined the
term the “curse of dimensionality”. By this, Bellman meant the following: oftentimes when MDPs
are used to model a practical decision making problem, the state space oftentimes takes the
product form  with some . If each set  here has at only two(!) elements,
the state space will have at least  elements. This is an exponential growth as a function of ,
which is taken as the fundamental scaling quantity. Thus, any algorithm that needs to even just
enumerate the states in the state space is “cursed” to perform a very lengthy calculation. While we
start with considering the case when both the state and the action space are small (as described
above), the main focus will be on the case when this is not true anymore. In this way, the problem
will be to �gure out ways of breaking the curse. But just to make things clear, in the worst-case,
there is no cure to this curse, as we shall see it soon in a rigorous fashion. Any cure will come by
changing the problem, either by changing the objective, or by changing the inputs available, or
both.

P(S0 = s0,A0 = a0,S1 = s1,A1 = a1, …) = μ(s0) × π0(a0|h0) × Pa0(s0, s1)
×π1(a1|h1) × Pa1(s1, s2)
× ⋯
×πt(at|ht) × Pat(st, st+1)
× ⋯

ht = (s0, a0, … , st−1, at−1, st)
1/2

P

R = ∑t≥0 γ
trAt

(St)

Why Markov?
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We described MDPs as if the same set of actions was available in all the states. This may create the
(false) impression that action  in state  has something to do with action  in state  (i.e.,
their rewards, or next state distributions are shared or are similar). Given the MDP de�nition
though, clearly, no such assumptions are made.

In a way, a better way of describing an MDP is using a set  and an equivalence relation over , or,
equivalently, the partition induced by it over . We should think of  as the set of possible state-
action pairs: The equivalence relation over  then gives which of these share a common state.
Alternatively, if  and  are in the same partition, they share a state, which we can identify with
the partition. Then, for every , the MDP would specify a distribution over the parts of the
partition (the “next states”) and one should specify a reward. While this description is appealing
from a mathematical perspective, it is nonstandard and would make it harder to relate everything
to the literature. Furthermore, the description chosen, apart from the inconvenience that one need
to forcefully remember that actions do not keep their identity across states, is quite intuitive and
compact.

A common variation in the literature, which avoids the “sharing issue” is to assume that every
state is equipped with a set  of actions admissible to the state and these sets are disjoint
across the states. This description allows the number of actions to be varied across the states.
While this has a minor advantage, our notation is simpler and tends not to lose much in
comparison to these more sophisticated alternatives.

In many practical problems it is not a priori clear whether the problem has a good approximate
description as an MDP. One critical aspect that is missing from the MDP description is that the
states of the MDP may not be available for measurement and thus the control (the choice of the
action) cannot use state information. For now, we push this problem aside, but we shall return to it
time-to-time. The reason is that it is best to start with the simpler questions and, at least
intuitively, the problem of �nding a policy that can use state information feels easier than �nding
one that cannot even access the state information. First, at least, we should �nd out what can be
done in this case (and how e�ciently), hoping that the more complex cases will either be reducible
to this case, or will share some common patterns.

Why use  rather than, say, ? Or , or  rather than ? All these
notations have pros and cons. None of them is ideal for all purposes. One explanation for using this
notation is that later we will replace  with , where  will be a special policy (a memoryless, or
stationary Markov policy). When doing so, the notation of  (suppressing ) and  (a stochastic
matrix!) will be tremendously useful.

A bigger question is why use  for states and  for actions. Is not the answer in the words? Well,
people working in control would disagree. They would prefer to use  for state and  for actions,
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Z Z
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and I am told by Maxim Raginsky, that these come from Russian abbreviations, so they make at
least as much sense as the notation used here. That is, if one speaks Russian (and if not, why not
learn it?). Dimitri Bertsekas likes using  etc. for states, which seems �ne if one has discrete
(countable) state spaces.

Some authors (e.g., this author in some of their papers or even in his book) considers rewards
which are stochastic. This may matter when the problem is to learn a good policy, or to �nd a good
plan while interacting with a stochastic simulator. However, when it comes to de�ning the object
of computation, we can safely ignore (well-behaved) stochastic rewards. Here, the well-behaved
stochastic rewards are those whose conditional expectation given an arbitrary history up to a state

 and an action  taken in that state depends only on . Which is what we start here from.

“The” book about MDPs is:

Puterman, Martin L. 2005. Markov Decision Processes (Discrete Stochastic Dynamic
Programming). Wiley-Interscience.
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