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In the lecture on approximate policy iteration, we proved that for any MDP feature-map pair
 and any  excess suboptimality target, with a total runtime of

least-squares policy iteration with -optimal design (LSPI-G) can produce a policy  such that
the suboptimality gap  of  satis�es

where  is the worst-case error with which the -dimensional features can approximate the
action-value functions of memoryless policies of the MDP . In fact, the result continues to
hold if we restrict the memoryless policies to those that are -measurable in the sense that the
probability assigned by such a policy to taking some action  in some state  depends only on

. Denote the set of such policies by . Then, for an MDP  and associated feature-map 
, let

Checking the proof, noticing that LSPI produces -measurable policies only, it follows that
provided the �rst policy it uses is also -measurable,  in  can be replaced by .

Earlier, we also proved that the ampli�cation of  by the -factor is unavoidable by any
e�cient planner. However, this leaves open the question of whether the ampli�cation by a
polynomial power of  is necessary, and whether in particular, the quadratic
dependence is necessary? Our �rst result, which is given without proof, shows that in the case of
LSPI this ampli�cation is real and the quadratic dependence cannot be improved.

Theorem (LSPI error ampli�cation lower bound): The quadratic dependence in  is tight:
There exists a constant  such that for every  and every  there exists a
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featurized MDP , a policy  of the MDP, a distribution  over the states such that LSPI
when it is allowed in�nitely many rollouts of in�nite length produces a sequence of policies

 such that

The result of the theorem holds even when LSPI is used with state-aggregation. Intuitively,
state-aggregation means that states are groups into a number of groups and states belonging to
the same group are treated identically when it comes to representing value functions. This,
value-functions based on state-aggregation are constant over any group. When we are
concerned with state-value functions, aggregating the states based on a partitioning of the
states  into the groups  (i.e.,  and all the subsets are disjoint from each other),
a feature-map that allows to represent these piecewise constant functions is

where  is the indicator function that takes the value of one when its argument (a logical
expression) is true, and is zero otherwise. In other words, . Any feature
map of this form de�nes a partitioning of the state-space and thus corresponds to the state-
aggregation. Note that the piecewise constant functions can also be represented if we rotate all
the features by the same rotation. The only important aspect here is that the features of di�erent
states are either identical, or orthogonal to each other, making the rows of the feature matrix an
orthonormal system.

For approximating action-value functions, state-aggregation uses the same partitioning of
states regardless of the identity of the actions: In e�ect, for each action, one uses the feature
map from above, but with a private parameter vector. This e�ectively amounts to stacking 

-times, to get one copy of it for each action . Note that for state-aggregation, there is no

 ampli�cation of the approximation errors: State-aggregation is extrapolation friendly, as
will be explained at the end of the lecture.

Returning to the result, an inspection of the actual proof reveals that in this case LSPI leads to a
sequence of policies that alternate between the initial policy and . “Convergence” is fast, yet,
the guarantee is far from satisfactory. In particular, in the same example, an alternate
algorithm, which we will cover next can reduce the quadratic dependence on the horizon to a
linear dependence.
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Politex comes from Policy Iteration with Expert Advice. Assume that one is given a featurized
MDP  with state-action feature-map  and access to a simulator, and a -optimal design

 for .

Politex generates a sequence of policies  such that for ,

where

with

where for ,  is the parameter vector obtained by running the least-squares policy
evaluation algorithm based on G-optimal design (LSPE-G) to evaluate policy  (see this
lecture). In particular, recall that this algorithm rolls out policy  from the points of a G-
optimal design to produce  independent trajectories of length  each, calculates the average
return for each of these design points and then solves the (weighted) least-squares regression
problem where the features are used to regress on the obtained values.

Above,  truncates its argument to the  interval:

Note that to calculate , one does need to calculate 

and then compute .

Unlike in policy iteration, the policy returned by Politex after  iterations is either the “mixture
policy”

or the policy which gives the best value with respect to the start state, or start distribution. For
simplicity, let us just consider the case when  is used as the output. The meaning of a mixture
policy is simply that one of the  policies is selected uniformly at random and then the selected
policy is followed for the rest of time. Homework 3 gives precise de�nitions and asks you to
prove that the value function of  is just the mean of the value functions of the constituent
policies:
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We now argue that the dependence on the approximation error of the suboptimality gap of 
only scales with , unlike the case of approximate policy iteration.

For this, recall that by the value di�erence identity

Summing up, dividing by , and using  gives

Now, . Also, . Let . Elementary
algebra then gives

We see that the approximation errors  appear only in term . In particular, taking
pointwise absolute values, using the triangle inequality, we get that

which shows the promised dependence. It remains to show that  above is also under
control. However, this is left to the next lecture.

The  in our results comes from controlling the extrapolation errors of linear prediction. In the

case of state-aggregretion, however, this extra  error ampli�cation is completely avoided:
Clearly, if we measure a function with a precision  and there is at least one measurement per
part, then by using the value measured at each part (at an arbitrary state there) over the whole
part, the worst-case error is bounded by . Weighted least-squares in this context just takes the
weighted average of the responses over each part and uses this as the prediction, so it also avoids
amplifying approximation errors.
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In this case, our analysis of extrapolation errors is clearly conservative. The extrapolation error
was controlled in two steps: In our �rst lemma, for  weighted least-squares we reduced this
problem to that of controlling  where  is the moment matrix for .

In fact, the proof of this lemma is the culprit: By carefully inspecting the proof, we can see that
the application of Jensen’s inequality introduces an unnecessary term: For the case of state
aggregation (orthonormed feature matrix),

as long as the design  is such that it chooses any group exactly once. Thus, the case of state-
aggregation shows that some feature-maps are more extrapolation friendly than others. Also,

note that the Kiefer-Wolfowitz theorem, of course, still gives that  is the smallest value that
we can get for  when optimizing for .

It is a fascinating question of how extrapolation errors behave for various feature-maps.

In homework 2, Question 3 was concerned with least-squares value iteration. The algorithm
concerned (call it LSVI-G) uses a random approximation of the Bellman operator, based on a G-
optimal design (and action-value functions). The problem was to show a result similar to what
holds for LSPI-G holds for LSVI-G, as well. That is, for any MDP feature-map pair  and
any  excess suboptimality target, with a total runtime of

least-squares policy iteration with -optimal design (LSPI-G) can produce a policy  such that
the suboptimality gap  of  satis�es

Thus, the dependence on the horizon of the approximation error is similar to the one that was
obtained for LSPI. Note that the de�nition of  is di�erent from what we have used in
analyzing LSPI:

Above,  is the Bellman optimality oerator for action-value functions and  is de�ned so that
for ,  is also a  function which is obtained from  by truncating
for each input  the value  to :
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. In , “BOO” stands for “Bellman-
optimality operator” in reference to the appearance of  in the de�nition.

In general, the error measures  used in LSPI and  are incomparable. The latter quantity
measures a “one-step error”, while  is concerned with approximating functions de�ned over
an in�nite-horizon.

Call an MDP linear if both the reward function and the next state distributions for each state lie
in the span of the features:  with some  and , as an  matrix takes the
form  with some . Clearly, this is a notion that captures how well the
“dynamics” (including the reward) of the MDP can be “compressed”.

When an MDP is linear, . We also have in this case that . More generally, de�ning
 and , it is not hard to see that

 and , which shows that both policy iteration
(and its soft versions) and value iteration are “valid” approaches, though, by ignoring the fact
that we are comparing upper bounds, this also shows that value iteration may have an edge over
policy iteration when the MDP itself is compressible. This should not be too surprising given that
value-iteration is “more direct” in aiming to calculate . Yet, they may exist cases when the
action-value functions are compressible, while the dynamics is not.

Let . A stationary point of  with respect to some set of memoryless policies  is any
 such that

It is known that if  are state-aggregation features then any stationary point  of  satis�es

where  is de�nes as the worst-case error of approximation action-value functions of -
measurable policies with the features (the same constant as used in the analysis of approximate
policy iteration).

Politex can be seen as a “soft” version of policy iteration with averaging. The softness is
controlled by : When , Politex uses a greedy policy w.r.t. to an average of all previous -
functions. Notice that in this case if Politex were to use a greedy policy w.r.t. the last -function,
then it would reduce exactly to LSPI-G. As we have seen, in LSPI-G the approximation error can
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get quadratically ampli�ed with the horizon . Thus, one way to avoid this quadratic
ampli�cation is to stay soft with averaging. As we shall see in the next lecture, the price of this is
a relatively slower convergence to a target suboptimality excess value. Nevertheless, the promise
is that the algorithm will still stay polynomial in all the relevant quantities.

Politex was introduced in the paper

POLITEX: Regret Bounds for Policy Iteration using Expert Prediction. Abbasi-Yadkori, Y.;
Bartlett, P.; Bhatia, K.; Lazic, N.; Szepesvári, C.; and Weisz, G. In ICML, pages 3692–3702, May
2019. pdf

However, as this paper also notes, the basic idea goes back to the MDP-E algorithm by Even-Dar
et al:

Even-Dar, E., Kakade, S. M., and Mansour, Y. Online Markov decision processes. Mathematics
of Operations Research, 34(3):726–736, 2009.

This algorithm considered a tabular MDP with nonstationary rewards – a completely di�erent
setting. Nevertheless, this paper introduces the basic argument presented above. The Politex
paper notices that the argument can be extended to the case of function approximation. In
particular, it also notes the nature of the function approximator is irrelevant as long as the
approximation and estimation errors can be tightly controlled.

The Politex paper presented an analysis for online RL and average reward MDPs. Both add
signi�cant complications. The argument shown here is therefore a simpler version. Connecting
Politex to LSPE-G in the discounted setting is trivial, but has not been presented before in the
literature.

The �rst paper to use the error decomposition shown here together with function approximation
is

Abbasi-Yadkori, Y., Lazic, N., and Szepesvári, C. Modelfree linear quadratic control via
reduction to expert prediction. In AISTATS, 2019.

1/(1 − γ)
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