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The following lemma can be extracted from the calculations found at the
end of the last lecture:

Lemma (Mixture policy suboptimality): Fix an MDP . For any sequence  of
policies, any sequence  of functions, and any policy , the mixture
policy  satis�es

In particular, the only restriction is on policy  so far and that is that it has to be a memoryless
policy. To control the suboptimality of the mixture policy, one just needs to control the action-
value approximation errors  and the term  and for this we are free to choose the
policies  in any way we want them to be chosen. To help with this choice, let us
now inspect  for a �xed state :

where, abusing notation, we use  for . Now, recall that  will be computed based
on  while  is unknown. One must thus wonder whether it is possible to control this term?

As it happens, the problem of controlling terms of this type is the central problem studied in a
sub�eld of learning theory, online learning. In particular, in online linear optimization, the
following problem is studied:

14. Politex

M π0, … ,πk−1
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An adversary and a learner are playing a zero-sum minimax game in  discrete rounds, taking
actions in an alternating manner. In round  ( ), �rst, the learner needs to choose
a vector . Then, the adversary chooses a vector, . Before its choice,
the adversary learns about all previous choices of the learner, and the learner also learns about
all previous choices of the adversary. They also remember their own choices. For simplicity, let
us constraint the adversary and the learner to be deterministic. The payo� to the adversary at
the end of the  rounds is

In particular, the adversary’s goal is maximize this, while the learner’s goal is to minimize this
(the game is zero-sum). Both the adversary and the learner are given  and the sets .
Letting  to denote the learner’s strategy (a sequence of maps of histories to ) and  to
denote the adversary’s strategy (a sequence of maps of histories to ), the above quantity
depends on  and : .

Taking the perspective of the learner, the quantity de�ned in  is called the learner’s regret.
Denote the minimax value of the game by : .

Thus, this only depends on ,  and . The dependence is suppressed when it is clear from the
context. The central question then is how  depends on  and also on  and . In online
linear optimization both sets  and  are convex.

Connecting these games to our problem, we can see that  in  matches the regret
de�nition in  if we let ,  be the 
simplex of  and . Furthermore,  needs to be chosen �rst, which
is followed by the choice of . While  will not be chosen in an adversarial fashion, a
bound  on the regret against arbitrary choices will also serve as a bound for the speci�c choice
we will need to make for .

Mirror descent (MD) is an algorithm that originates in optimization theory. In the context of
online linear optimization, MD is a strategy for the learner which is known to guarantee near
minimax regret for the learner under a wide range of circumstances.

To align with the large body of literature on online linear optimization, it will be bene�cial to
switch signs. Thus, in what follows we assume that the learner will aim at minimizing  by
its choice  and the adversary will aim at maximizing the same expression over its choice

. This means that we also rede�ne the regret to

k
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Everything else remains the same: The game is zero-sum, minimax, the regret is the payo� for
the adversary and the negative regret is the payo� of the learner. This version is called a loss-
game. The reason to prefer the loss game is because most of optimization theory is written for
minimizing convex functions rather than for maximizing concave functions. However, clearly,
this is an arbitrary choice. The second form of the regret shows that the player’s goal is to
compete with the best single decision from  but chosen given the hindsight of knowing all the

choices of the adversary. That is, the learner’s goal is to keep its cumulative loss 

close to, or even below the best cumulative loss in hindsight, . (With this,

 matches  when we change .)

MD is recursively de�ned and in its simplest form it has two design parameters. The �rst is an

extended real-valued convex function , called the “regularizer”, while the second
is a stepsize, or learning rate parameter . (The extended reals is just  together with

 and an appropriate extension of basic arithmetic. By allowing convex functions to
take the value  allows to merge “constraints” with objectives in a seamless fashion. The
value  is added because sometimes we have to work with negated extended real-valued
convex functions.)

The speci�cation of MD is as follows: In round ,  is picked to minimize :

In what follows, we assume that all the minimizers that we need in the de�nition of MD do
exist. In the speci�c case that we need,  is the  simplex, which is a closed convex set, and
since convex functions are also continuous, the minimizers that we will need are guaranteed to
exist.

Then, in round , MD chooses  as follows:

Here,

Rk = max
x∈X

k−1

∑
j=0

⟨xj, yj⟩ − ⟨x, yj⟩

=
k−1

∑
j=0

⟨xj, yj⟩ − min
x∈X

k−1

∑
j=0

⟨x, yj⟩ . (4)

X

∑k−1
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minx∈X ∑
k−1
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T1(s) Rk Y = [−1/(1 − γ), 0]A

F : R
d → R̄

η > 0 R

+∞, −∞
+∞

−∞

0 x0 ∈ X F

x0 = arg min
x∈X

F(x) .

X d − 1

j > 0 xj

xj = arg min
x∈X

η⟨x, yj−1⟩ + DF (x,xj−1) (5)

DF (x,x′) = F(x) − (F(x′) + ⟨∇F(x′),x − x′⟩)
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is the remainder term in the �rst-order Taylor-series expansion
of the value of  at  when the expansion is carried out at  and,
for simplicity, we assume that  is di�erentiable on the interior
of its domain . Since for any
convex function and any linear approximation of it stays below
the graph of the convex function, we immediately get that  is
nonnegative valued. For an illustration see the �gure on the
right, which shows a convex function, the �rst-order Taylor approximation of the function at
some point.

One should think of  is a “nonlinear distance inducing function”; above  can be
thought of penalty imposed on deviating from . However,  is more often than not is not a
distance, i.e., often it is not even symmetric. Because of this, we can’t really call  a distance.
Hence, it is called a divergence. In particular,  is called the Bregman divergence of 
from .

In the de�nition of the MD update rule, we tacitly assumed that  is well-de�ned.
This requires that  should be di�erentiable at , which one needs to check when applying
MD. In our speci�c case, this will hold, again.

The idea of the MD update rule is to (1) allow the learner to react to the last loss  vector
chosen by the adversary, while also (2) limiting how much  can depart from , thus,
e�ectively stabilizing the algorithm, the tradeo� governed by the choice of . (Separating 
from  only makes sense because there are some standard choices for , but  is really just a
scale parameter for ). In particular, the larger the value of  is, the less “data-sensitive” MD
will be (here,  constitute the data), and vice versa, the smaller  is, the more data-
sensitive MD will be.

Under some technical conditions on , the update rule  has a two step-implementation:

The �rst equation above explains the name: To obtain , one �rst transforms  using
 to the “mirror” (dual) space where “gradients”/”slopes live”, where

one then adds to the result , which can be seen as a “gradient step” (interpreting 
as the gradient of some loss). Finally, the result is then mapped back to the original (primal)
space using the inverse of .

The second step of the update takes the resulting point  and “projects” it to  in a way that
respects the “geometry induced by ” on the space .

F x x′

F

dom(F) = {x ∈ R : F(x) < +∞}

DF

F DF (x,x′)
x′ DF

DF

DF (x,x′) x

x′

DF (x,xj−1)
F xj−1

yj−1

xj xj−1

η > 0 η

F F η

F η

y0, … , yk−1 η

Where is the mirror?
F (5)

~xj = (∇F)−1(∇F(xj−1) − ηyj−1) ,
xj = arg min

x∈X
DF (x, ~xj) .

(6)
(7)

~xj xj−1

∇F : dom(∇F) → R
d

−ηyj−1 yj−1

∇F

~xj X

F R
d



1/8/23, 9:45 PM Politex | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec14/ 5/11

The use of complex terminology, like “primal” and “dual” spaces, which happen to be the same
old Euclidean space, , probably sounds like an overkill. Indeed, in the simple case we
consider when these spaces are identical it is. The distinction would become important when
working with in�nite dimensional spaces, which we leave to others for now.

Besides helping with understanding the terminology, the two-step update shown can also be
useful for computation. In fact, this will be the case in the special case that we need.

We have seen that in the special case we need,

To use MD we need to specify the regularizer  and the learning
rate. For the former, we choose

which is known as the unnormalized negentropy function. Note
that  takes on �nite values when  (since

, we set  whenever ). Outside of this quadrant, we
de�ne the value of  to be . The plot of  for  is shown on the right.

It is not hard to verify that  is convex: First,  is convex. Taking the �rst
derivative, we �nd that for any ,

where  is applied componentwise. Taking the derivative again, we �nd that for ,

i.e., the matrix whose th diagonal entry is . Clearly, this is a positive de�nite matrix,
which su�ces to verify that  is a convex function.

The Bregman divergence induced by  is

R
d

Mirror descent on the simplex

X = Pd−1 := {p ∈ [0, 1]d : ∑
a

pa = 1} ,

Y = [−1/(1 − γ), 0]d , and
d = A .

F

F(x) =∑
i

xi log(xi) − xi ,

F x ∈ [0, ∞]d

limx→0+ x log(x) = 0 xi log(xi) = 0 xi = 0
F +∞ x log(x) − x x ≥ 0

F dom(F) = [0, ∞]d

x ∈ (0, ∞)d

∇F(x) = log(x) ,

log x ∈ (0, ∞)d

∇2F(x) = diag(1/x) ,

(i, i) 1/xi

F

F

DF (x,x′) = ⟨1,x log(x) − x − x′ log(x′) + x′⟩ − ⟨log(x′),x − x′⟩

= ⟨1,x log(x/x′) − x + x′⟩ ,
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where again we use an “intuitive” notation when operations are �rst applied componentwise
(i.e.,  denotes a vector whose th component is ). Note that the domain of 
is . If both  and  lie in the -simplex,  becomes the well-known
relative entropy, or Kullback-Leibler (KL) divergence.

It is not hard to verify that  can be obtained as shown in -  and in particular this two-
step update takes the form

Unrolling the recursion, we can also that this is the same as

Based on this, it is obvious that MD can be e�ciently implemented with this choice of . As far
as the regret is concerned, the following theorem holds:

Theorem (MD with negentropy on the simplex): Let  amd . Then, no
matter the adversary, a learner using MD with

is guaranteed that its regret  in  rounds is at most

When the adversary plays in  with , we can use MD on the transformed
sequence . Then, for any ,

x log(x) i xi log(xi) DF

[0, ∞)d × (0, ∞)d x x′ d − 1 DF

xj (6) (7)

~xj,i = xj−1,i exp(−ηyj−1,i) , xj,i =
~xj,i

∑i′
~xj,i′

, i ∈ [d] .

~xj,i = exp(−η(y0,i + ⋯ + yj−1,i)) , xj,i =
~xj,i

∑i′
~xj,i′

, i ∈ [d] . (8)

F

X = Pd−1 Y = [0, 1]d

η = √ 2 log(d)

k

Rk k

Rk ≤√2k log(d) .

Y = [a, b]d a < b
~yj = (yj − b1)/(b − a) ∈ [0, 1]d x ∈ X



1/8/23, 9:45 PM Politex | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec14/ 7/11

where the third equality used that . Taking the maximum over  gives
that

By the update rule in ,

Note that the “shift” by  cancels out in the normalization step. Hence, MD in this case takes
the form

which is the same as before, except that the learning rate is scaled by . In particular,
in this case one can set

and use update rule .

As agreed,  from  takes the form of a -round regret against  in online linear
optimization on the simplex with losses in . This suggest to use MD in a state-
by-state manner to control . Using  and  gives

Rk(x) :=
k−1

∑
j=0

⟨xj − x, yj⟩

=
k−1

∑
j=0

⟨xj − x, (b − a)~yj + b1⟩

= (b − a)
k−1

∑
j=0

⟨xj − x, ~yj⟩

≤ (b − a)√2k log(d) ,

⟨xj, 1⟩ = ⟨x, 1⟩ = 1 x ∈ X

Rk ≤ (b − a)√2k log(d) . (9)

(8)

~xj,i = exp(−η(~y0,i + ⋯ + ~yj−1,i)) = exp(−η/(b − a)(y0,i + ⋯ + yj−1,i − jb)) , i ∈ [d] .

−jb

~xj,i = exp(−η/(b − a)(y0,i + ⋯ + yj−1,i)) , xj,i =
~xj,i

∑i′
~xj,i′

, i ∈ [d] , (10)

1/(b − a)

η =
1

b − a
√ 2 log(d)

k
. (11)

(8)

MD applied to MDP planning
T1(s) (2) k π∗(s, ⋅)

[−1/(1 − γ), 0]A

T1(s) (8) (11)

Ej(s, a) = exp(η(q̂0(s, a) + ⋯ + q̂j−1(s, a))) , πj(a|s) =
Ej(s, a)

∑a′ Ej(s, a′)
, a ∈ A
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to be used with

Note that this is the update used by Politex. Then,  gives that simultaneously for all ,

Putting things together, we get the following result:

Theorem (Politex suboptimality gap bound): Pick a featurized MDP  with a full rank
feature-map  and let . Assume that B2  holds for  and the
rewards in  are in the  interval. For , de�ne

Then, in  iterations, Politex produces a mixed policy  such that with probability , the
suboptimality gap  of  satis�es

In particular, for any , choosing  so that

policy  is -optimal with

while the total computation cost is .

η = (1 − γ)√
2 log(A)

k
.

(9) s ∈ S

|T1(s)| ≤
1

1 − γ
√2k log(A) . (12)

(M,ϕ)
φ : S × A → R

d K,m,H ≥ 1 ε (M,ϕ)
M [0, 1] 0 ≤ ζ < 1

κ(ζ) = ε(1 + √d) + √d(
γH

1 − γ
+

1
1 − γ

√ log(d(d + 1)K/ζ)

2m
) ,

K π̄K 1 − ζ

δ π̄K

δ ≤
1

(1 − γ)2
√ 2 log(A)

K
+

2κ(ζ)

1 − γ
.

ε′ > 0 K,H,m

K ≥
32 log(A)

(1 − γ)4(ε′)2
,

H ≥ H
γ,(1−γ)ε′/(8√d) and

m ≥
32d

(1 − γ)4(ε′)2
log((d + 1)2K/ζ) ,

πK δ

δ ≤
2(1 + √d)

1 − γ
ε + ε′ ,

poly( 1
1−γ

, d, A, 1
(ε′)2 , log(1/ζ))

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec8#ass:b2e
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Note that as compared to the result of LSPI with G-optimal design, the ampli�cation of the
approximation error  is reduced by a factor of , as it was promised. The price is that
now the number of iterations , is a polynomial of , whereas before it was logarithmic.

This suggest that perhaps a higher learning rate can help initially to speed up convergence to
get the best of both words.

Proof: As in the proof of the suboptimality gap for LSPI, we get that for any , with
probability at least , for any ,

where the �rst inequality uses that  takes values in . On the event when the above
inequalities hold, by  and ,

The details of this calculation are left to the reader. 

Online linear optimization is a special case of online convex/concave optimization, where the
learner chooses elements of some nonempty convex set  and the adversary needs to
choose an element of a nonempty set  of concave functions over :

. Then, the de�nition of regret is changed to

where as before  is the choice of the learner for round  and  is the choice of the
adversary for the same round. Identifying any vector  of  with the linear map ,
we see that online linear optimization is a special case of this problem.

Of course, by negating all functions in  (i.e., letting ) and rede�ning the
regret to

ε 1/(1 − γ)
K 1

(1−γ)ε′

0 ≤ ζ ≤ 1
1 − ζ 0 ≤ k ≤ K − 1

∥qπk − q̂k∥∞ = ∥qπk − ΠΦθ̂k∥∞ ≤ ∥qπk − Φθ̂k∥∞ ≤ κ(ζ) ,

qπk
[0, 1]

(1) (12)

δ ≤
1

(1 − γ)2
√ 2 log(A)

K
+

2κ(ζ)

1 − γ
.

■

Notes

Online convex optimization, online learning

X ⊂ R
d

Y X

Y ⊂ {f : X → R : f is concave}

Rk = max
x∈X

k−1

∑
j=0

yj(x) − yj(xj) , (13)

xj ∈ X j yj ∈ Y

u R
d x ↦ ⟨x,u⟩

Y
~
Y = {−y : y ∈ Y}

Rk = max
x∈X

k−1

∑
j=0

~yj(xj) − ~yj(x) (14)

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec8#sec:lspiproof
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we get a de�nition that is used in the literature, which prefers the convex case to the concave.

Here, the interpretation is that  is a “loss function” chosen by the adversary in round .

The standard function notation (  is applied to ) injects unwarranted asymmetry in the
notation. After all, from the perspective of the learner, they need to choose a value in  that
works for the various functions in . Thus, we can consider any element of  as a function that
maps elements of  to reals through . Whether  has functions in them or  has
functions in them does not matter that much; it is the interconnection between  and  that
matters more. For this reason, one can study online learning when  above is replaced by

, where  is a speci�c map that assigns payo�s to every pair of points in 
and . When the map is �xed, one can spare an extra symbol by just using  in place of

, which makes things almost a full circle given that we started with the linear case when
.

We introduced truncation to simplify the analysis. The proof can be made to go through even
without it, with a mild increase of the suboptimality gap (or runtime). The advantage of

removing the projection is that without projection, ,
which leads to a practically signi�cant reduction of the runtime.
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