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In the previous lectures we attempted to reduce the complexity of planning by assuming
that value functions over the large state-action spaces can be compactly represented with
a few parameters. While value-functions are an indispensable component of poly-time
MDP planners (see Lectures 3 and 4), it is far from clear whether they should also be given
priority when working with larger MDPs.

Indeed, perhaps it is more natural to consider sets of policies with a compact description.
Formally, in this problem setting the planner will be given a black-box simulation access
to a (say, -discounted) MDP  as before, but the interface also provides
access to a parameterized family of policies over , , where for any
�xed parameter ,  is a memoryless stochastic policy: .

For example,  could be such that for some feature-map ,

In this case “access” to  means access to , which can be either global (i.e., the planner
is given the “whole” of  and can run any preprocessing on it), or local (i.e.,  is
returned by the simulator for the “next states”  and for all actions ). Of course, the
exponential function can be replaced with other functions, or, one can just use a neural
network to output “scores”, which are turned into probabilities in some way. Dispensing
with stochastic policies, a narrower class is the class of policies that are greedy with
respect to action-value functions that belong to some parametric class.

One special case that is worthy of attention due to its simplicity is the case when  is
partitioned into  (disjoint) subsets  and for , we have  basis
functions de�ned as follows:

15. From policy search to policy
gradients

γ M = (S,A,P , r)
(S,A) π = (πθ)θ∈Rd

θ ∈ R
d πθ πθ : S → M1(A)

πθ φ : S ×A → R
d

πθ(a|s) =
exp(θ⊤φ(s, a))

∑a′ exp(θ⊤φ(s, a′))
, (s, a) ∈ S ×A . (1)

πθ φ
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s′ ∈ S a

S

m S1, … ,Sm i ∈ [m] A

φi,a′(s, a) = I(s ∈ Si, a = a′) , s ∈ S, a, a′ ∈ A, i ∈ [m] . (2)
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Here, to minimize clutter, we allow the basis functions to be indexed by pairs and
identi�ed  with , as usual. Then, the policies are given by , the
collection of  probability vectors :

Note that because of the special choice of ,  for the unique index 
such that . This is known as state-aggregretion: States belonging to the same
group give rise to the same probability distribution over the actions. We say that the
featuremap  is of the state-aggregation type if it takes the form  with
an appropriate reindexing of the basis functions.

Fix now a state-aggregation type featuremap. We can consider both the direct
parameterization of policies given in , or the “Boltzmann” parameterization given in

. As it is easy to see the set of possible policies that can be expressed with the two
parameterizations are nearly identical. Letting  be the set of policies that can be
expressed using  and the direct parameterization and letting  be the set of
policies that can be expressed using  but with the Boltzmann parameterization, �rst
note that , and if we take the closure,

 of  then we can notice that

In particular, the Boltzmann policies cannot express point-mass distributions with �nite
parameters, but letting the parameter vectors grow without bound, any policy that can be
expressed with the direct parameterization can also be expressed by the Boltzmann
parameterization. There are many other possible parameterizations, as also mentioned
earlier. The important point to notice is that while the parameterization is necessary so
that the algorithms can work with a compressed representation, di�erent representations
may describe an identical set of policies.

A reasonable goal then is to ask for a planner that competes with the best policy within
the parameterized family, or the -best policy for some positive . Since there may not be
a parameter  such that  for any , we simplify the problem by
requiring that the policy computed is nearly best when started from some initial
distribution .

A 1, … , A θ = (θ1, … , θm)
m θ1, … , θm ∈ M1(A)

πθ(a|s) =
m

∑
i=1

∑
a′

φi,a′θi,a′ . (3)

φ πθ(a|s) = θi,a i ∈ [m]

s ∈ Si

φ : S ×A → R
d (2)

(3)

(1)
Πdirect

φ ΠBoltzmann

φ

Πdirect, ΠBoltzmann ⊂ M1(A)S ⊂ ([0, 1]A)S

clo(ΠBoltzmann) ΠBoltzmann

clo(ΠBoltzmann) = Πdirect .

Policy search

ε ε

θ vπθ ≥ vπθ′ − ε1 θ′ ∈ R
d

μ ∈ M1(S)
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De�ning  as

the policy search problem is to �nd a parameter  such that

The approximation version of the problem asks for �nding  such that

The formal problem de�nition then is as follows: a planning algorithm is given the MDP
 and a policy parameterization  and we are asking for an algorithm that returns

the solution to the policy search problem in time polynomial in the number of actions 
and the number of parameters  that describes the policy. An even simpler problem is
when the MDP has �nitely many states, and the algorithm needs to run in polynomial
time in ,  and . In this case, it is clearly advantageous for the algorithm if it is given
the exact description of the MDP (as described in Lecture 3) Sadly, even this mild version
of policy search is intractable.

Theorem (Policy search hardness): Unless , there is no polynomial time
algorithm for the �nite policy search problem even when the policy space is restricted to
the constant policies and the MDPs are restricted to be deterministic with binary rewards.

The constant policies are those that assign the same probability distribution to each state.
This is a special case of state aggregation when all the states are aggregated into a single
class. As the policy does not depend on the state, the problem is also known as the blind
policy search problem. Note that the result holds regardless of the representation used to
express the set of constant policies.

Proof: Let . The dynamics is deterministic: The next state is  if action
 is taken regardless of the state. A policy is simply a probability distribution

 over the action space, which we shall view as a column vector taking values
in . The transition matrix of  is , or, in matrix form, .

J : ML → R

J(π) = μvπ(= ∑
s∈S

μ(s)vπ(s)),

θ ∈ R
d

J(πθ) = max
θ′

J(πθ′) .

θ′ ∈ R
d

J(πθ) ≥ max
θ′

J(πθ′) − ε .

M (πθ)θ
A

d

S A d

P = NP

S = A = [n] a

a ∈ A

π ∈ M1([n])

[0, 1]n π Pπ(s, s′) = π(s′) Pπ = 1π⊤
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Clearly,  (i.e.,  is idempotent). Thus,  for any  and
hence

De�ning  so that , we have . Plugging this in into the
previous displayed equation and using that , we get

Thus we see that the policy search problem is equivalent to maximizing the quadratic
expression in the previous display over the probability simplex. Since there is no
restriction on , one may at this point conjecture that this will be hard to do. That this is
indeed the case can be shown by a reduction to the maximum independent set problem,
which asks for checking whether the independence number of a graph is above a
threshold and which is known to be NP-hard even for -regular graphs (i.e., graphs
where every vertex has exactly three neighbours).

Here, the independence number of a graph is de�ned as follows: We are given a simple
graph  (i.e., there are no self-loops, no double edges, and the graph is
undirected). An independent set in  is a neighbour-free subset of vertices. The
independence number of  is de�ned as

Quadratic optimization has close ties to the maximum independent set problem:

Lemma (Motzkin-Strauss ‘65): Let  be the vertex-vertex adjacency matrix
of simple graph (i.e.,  if and only if  is an edge of the graph). Then, for

 the  identity matrix,

P 2
π = 1π⊤

1π⊤ = Pπ Pπ P t
π = 1π⊤ t > 0

J(π) = μ(rπ +∑
t≥1

γ tP t
πrπ) = μ(I +

γ

1 − γ
1π⊤)rπ .

Rs,a = ra(s) R ∈ [0, 1]n×n rπ = Rπ

μ1 = 1

J(π) = μRπ +
γ

1 − γ
π⊤Rπ .

R

3

G = (V ,E)

G

G

α(G) = max{|V ′| : V ′ ⊂  independent in G} .

G ∈ {0, 1}n

Gij = 1 (i, j)

I ∈ {0, 1}n×n n × n

1

α(G)
= min

y∈M1([n])
y⊤(G + I)y .
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We now show that if there is an algorithm that solves policy search in polynomial time
then it can also be used to solve the maximum independent set problem for simple, -
regular graphs. For this pick a -regular graph  with  vertices. De�ne the MDP as above
with  states and actions and the rewards chosen so that  where  is
the vertex-vertex adjacency matrix of the graph and  is the all-ones matrix: .
We add  so that the rewards are in the  interval and in fact are binary as required.
Choose  as the uniform distribution over the states. Note that 
because the graph is -regular. Then, for ,

Hence,  holds

if and only if . Thus, the decision problem of deciding that  is at least
as hard as the maximum independent set problem. As noted, this is an NP-hard problem,
hence the result follows. 

Based on the theorem just proved it is not very likely that we can �nd computationally
e�cient planners to compete with the best policy in a restricted policy class, even if the
class looks quite benign. This motivates aiming at some more modest goal, one possibility
of which is to compute local maxima of the map . Let

 be the set of policies that can represented; we view
these now as “large vectors”. Then, in this approach we aim to identify  (and its
parameters) so that for any  and small enough  so that ,

. For  small,
. Plugging this in into the previous

inequality, reordering and dividing by  gives

Here,  denotes the derivative of . What remains to be seen is whether (1) relaxing
the goal to computing  helps with the computation (and when) and (2) whether we can

3
3 G n

n R = E − (I + G) G

E E = 11
⊤

E [0, 1]

μ 1
⊤(I + G) = 41⊤

3 π ∈ M1(A)

J(π) =
1

1 − γ
− μ(E + I + G)π −

γ

1 − γ
π⊤(E + I + G)π

=
1

1 − γ
−

1

n
1

⊤(I + G)π −
γ

1 − γ
π⊤(I + G)π

=
1

1 − γ
−

4

n
−

γ

1 − γ
π⊤(I + G)π .

max
π∈M1([n]

J(π) =
1

1 − γ
−

4

n
−

γ

1 − γ

1

α(G)
≥

1

1 − γ
−

4

n
−

γ

1 − γ

1

m

α(G) ≥ m J(π) ≥ a

■

Potential remedy: Local search

J : π ↦ μvπ

Π = {πθ : θ ∈ R
d} ⊂ [0, 1]S×A

π∗ ∈ Π
π′ ∈ Π δ > 0 π∗ + δ(π′ − π∗) ∈ Π

J(π∗ + δ(π′ − π∗)) ≤ J(π∗) δ

J(π∗ + δ(π′ − π∗)) ≈ J(π∗) + δ⟨J ′(π∗),π′ − π∗⟩

δ > 0

⟨J ′(π∗),π′ − π∗⟩ ≤ 0 , π′ ∈ Π . (4)

J ′(π) J

π∗
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get some guarantees for how well  satisfying  will do compared to
, that is obtaining some approximation guarantees. For the latter we

seek for some function  of the MDP  and  (or , when  is based on some
featuremap) so that

As to the computational approaches, we will consider a simple approach based on
(approximately) following the gradient of .

The reader may be wondering about what is the appropriate “access model” when  is
not restricted to the form given in . There are many possibilities. One is to develop
planners for speci�c parametric forms. A more general approach is to let the planner

access  and  for any  it has encountered and any value of  it
chooses. This is akin to the �rst-order black-box oracle model familiar from
optimization theory.

The hardness result for policy search is taken from a paper of Vlassis, Littman and Barber,
who actually were interested in the computational complexity of planning in partially
observable Markov Decision Problems (POMDPs). It is in fact an important observation
that with function approximation, planning in MDPs becomes a special case of planning
in POMDPs: In particular, if policies are restricted to depend on the states through a
feature-map  (any two states with identical features will get the same action
distribution assigned to them), then planning to achieve high reward with this restricted
class is almost the same as planning to achieve high reward in a partially observable MDP
where the observation function is . Planners for the former problem could still have
some advantage though if they can also access the states: In particular, an online planner
which is given a feature-map to help its search but is also given access to the states is in
fact not restricted to return actions whose distribution follows a policy from the feature-
restricted class of policies. In machine learning, in the analogue problem of competing
with a best predictor within a class but using predictors that do not respect the
restrictions put on the competitors are called improper and it is known that improper
learning is often more powerful than proper learning. However, when it comes to learning
online or in a batch fashion then feature-restricted learning and learning in POMDPs

π∗ (4)

J ∗ = maxπ∈Π J(π)
ε M Π φ Π

J(π∗) ≥ J ∗ − ε(M, Π)

θ ↦ J(πθ)

Notes

Access models
πθ

(1)

πθ(⋅|s) ∂
∂θ πθ(⋅|s) s θ ∈ R

d

From function approximation to POMDPs

φ : S → R
d

φ

https://en.wikipedia.org/wiki/Partially_observable_Markov_decision_process
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become exact analogs. Finally, we note in passing that Vlassis et al. (2012) also add an
argument that shows that it is not likely that policy search is in NP.

Provided that from an approximate solution to the Motzkin-Straus problem one can
e�ciently extract an approximate solution to the maximum independent set problem, it
follows that the approximate version of policy search is also NP-hard. In particular, it is
not hard to see with the same construction that if one has an e�cient method to �nd a
policy with  then this gives an e�cient method to �nd an
independent set of size  for the said -regular graphs where

where the last inequality follows if ,  and 

holds. Now, it is known that, unless P=NP, there is no polynomial time approximation
algorithm for the maximal independent set problem with approximation factor

 or better. Hence, we get that, unless P=NP, there is no polynomial time
approximation algorithm for the policy search problem for any �xed 
provided the planning horizon is scaled with  so that . (This is somewhat
unsatisfactory given that the range of the optimal values is : It would be more
natural to scale  with , i.e., consider relative errors as in complexity theory.)
Also, it remains an open problem to get a hardness result for a “constant”  (independent
of ).

The above is still dependent on whether an approximate solution to the maximum
independent set problem can be extracted from an approximate solution to the Motzkin-
Straus optimization problem.

A common reason to consider policy search is because working with a restricted
parametric family of policies holds the promise of decoupling the computational cost of
learning and planning from the cardinality of the action-space. Indeed, with action-value
functions, one usually needs an e�cient way of computing greedy actions (with respect to
some �xed action-value function). Computing  in the lack of extra
structure of the action-space and the function  takes linear time in the size of ,
which is highly problematic unless  has a small cardinality. In many applications of

Open problem: Hardness of approximate policy search

J(π) ≥ maxπ Jπ − ε

cα(G) 3

c =
1

1 +
1−γ

γ εα(G)
≥

1

1 +
1−γ

γ εn
≥ 94/95 ,

ε ≤ 0.5 γ ≥ 0.5 H := 1
1−γ

≥ n
95/94−1 = 94n

c = 94/95

0 ≤ ϵ ≤ 0.5
n H = constn

1/(1 − γ)
ϵ 1/(1 − γ)

γ

n

Dealing with large action spaces

arg maxa∈A q(s, a)

q(s, ⋅) A

A



1/8/23, 9:45 PM From policy search to policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec15/ 8/10

practical interest this is not the case: The action space can be “combinatorially sized”, or
even a subset of some (potentially multidimensional) continuous space.

If sampling from  can be done e�ciently, one may then potentially avoid the
above expensive calculation. Thus, policy search is often proposed as a remedy to extend
algorithms to work with large action spaces. Of course, this only applies if the sampling
problem can indeed be e�ciently implemented, which adds an extra restriction on the
policy representation. Nevertheless, there are a number of options to achieve this: One
can use for example an implicit representation (perhaps in conjunction with a direct one
that uses probabilities/densities) for the policy.

For example, the policy may be “represented” as a map  so that
sampling from  is accomplished by drawing a sample  from a �xed
distribution over the set  and then returning . Clearly, this is e�cient as
long as  can be e�ciently evaluated at any of its inputs and the random value  can be
e�ciently produced. If  is su�ciently �exible, one can in fact choose a very simple
distribution for , such as the standard normal distribution, or the uniform distribution.

Note that when  is continuous and the policies are deterministic is a special case: The
key is still to be able to e�ciently produce a sample from , just in this case this
means a deterministic computation.

The catch is that one may also still need the derivatives of  with respect to the
parameter  and with an implicit representation as described above, it is unclear whether
these derivatives can be e�ciently obtained. As it turns out, this can be arranged if 
is made of composition of elementary (invertible, di�erentiable) transformations with
this property (by the chain rule). This observation is the basis of various approaches to
“neural” density estimation (e.g., Tabak and Vanden-Eijnden, 2010, Rezende, Mohamed,
2015, or Jaini et al. 2019).
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πθ(⋅|s)

fθ : S ×R → A

πθ(⋅|s) R ∼ P

R f(s,R) ∈ A
fθ R

fθ
P

A

πθ(⋅|s)

πθ(⋅|s)
θ

fθ(⋅|s)
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The hardness of the maximum independent set problem is a classic result; see, e.g.,
Theorem 2.15 in the book of Arora and Barak (2009) above, though this proof does not
show that the hardness also applies to the case of 3-regular graphs. Below is the paper
that shows that approximating the maximum independent set size within a factor of

 is NP-hard even for -regular graphs. The precise statement is in the
main theorem statement on page 29 (this is the �rst, unnumbered and unnamed theorem
on pdf page 3). In particular, the 2nd bullet point has this bound, speci�cally the hardness
kicks in for approximation factors at least as large as . I am very grateful for
Zachary Friggstad who pointed me to this paper.
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