
1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 1/17

RL Theory

Planning in MDPs / 16. Policy gradients

PDF Version

In this last lecture on planning, we look at policy search through the lens of applying
gradient ascent. We start by proving the so-called policy gradient theorem which is then
shown to give rise to an e�cient way of constructing noisy, but unbiased gradient estimates
in the presence of a simulator. We discuss at a high level the ideas underlying gradient ascent
and stochastic gradient ascent methods (as opposed to more common case in machine
learning where the goal is to minimize a loss, or objective function, we are maximizing
rewards, hence ascending on the objective rather than descending). We then �nd out about
the limitations of policy gradient even in the presence of “perfect representation”
(unrestricted policy classes, tabular case) and perfect gradient information, which motivates
the introduction of a variant known as “natural policy gradients” (NPG). We then uncover a
close relationship between this method and Politex. The lecture concludes with comparing
results for NPG and Politex.

Fix an MDP and a discount factor . Continuing from the last
lecture for let be a stochastic policy: . Further, �x a distribution

 over the states and for a policy let

denote the expected value of using policy in from an initial state randomly chosen from
. The policy gradient theorem gives su�cient conditions under which the map

is di�erentiable at some parameter and gives a “simple” expression for the gradient
as a function of . Just to demistify this, for �nite (or discrete) action spaces, for a

memoryless policy and function , is a function mapping states to reals
de�ned via

16. Policy gradients

The policy gradient theorem
M = (S,A,P , r) 0 ≤ γ < 1
θ ∈ R

d πθ πθ : S → M1(A)
μ ∈ M1(S) π : S → M1(A)

J(π) = μvπ

π M

μ θ ↦ J(πθ)
θ = θ0

d
dx
Mπx

qπθ0

π q : R
S×A → R Mπq

(Mπq)(s) = ∑
a

π(a|s)q(s, a) .

https://rltheory.github.io/
https://rltheory.github.io/w2021-lecture-notes/planning-in-mdps
https://rltheory.github.io/documents/lectures/winter_2022/website_notes/planning_in_mdps/lec16.pdf

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 2/17

Hence, the derivative, is actually quite simple. It is a function mapping states to
dimensional vectors which satis�es

The theorem we give though is not limited to this case and also applies to when the action
space is in�nite and even when the policy is deterministic. For the theorem statement, recall
that for a policy we used to denote its discounted state occupancy measure. Also, for a

function , we use to denote its derivative.

Theorem (Policy Gradient Theorem): Fix an MDP . For , de�ne the maps
 and . Fix . Assume that at least one of the

following two conditions is met:

Then, is di�erentiable at and

where the last equality holds if is �nite.

For the second expression, we treat as an matrix. Note that this �ts well
with our convention of treating functions as “column vectors” (hence is a vector of
dimension) and with the standard convention that a “vector derivative” creates “row
vectors”.

Above, the second expression where we moved the derivative with respect to the parameter
inside the expression will only be valid in in�nite state spaces when some additional
regularity assumption is met. One such assumption is that is

-integrable.

In words, the theorem shows that the derivative of the performance of a policy can be
obtained by integrating a simple derivative that involves the action-value function of the
policy.

d
dx
Mπx

q d

d

dx
(Mπx

q)(s) = ∑
a

d

dx
πx(a|s)q(s, a) .

π ~νπ
μ

f f ′

(S,A,P , r) x ∈ R
d

fπ : x ↦ ~νπ
μMπx

qπ gπ : x ↦ ~νπx
μ vπ θ0 ∈ R

d

 exists and is continuous in a neighborhood of and exists;1 θ ↦ f ′
πθ

(θ0) θ0 g′
πθ0

(θ0)

 exists and is continuous in a neighborhood of and exists;2 θ ↦ g′
πθ

(θ0) θ0 f ′
πθ0

(θ0)

x ↦ J(πx) x = θ0

d

dx
J(πx)|x=θ0 =

d

dx
~ν
πθ0
μ Mπx

qπθ0 |x=θ0 = ~ν
πθ0
μ

d

dx
Mπx

qπθ0 |x=θ0 , (1)

S

d
dx
Mπx

qπθ0 S × d

Mπx
)qπθ0

S

s ↦ ∥ d
dx

(Mπx
qπθ0)(s)|x=θ0∥

~ν
πθ0
μ

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 3/17

Of the two conditions of the theorem, the �rst condition is the one that is generally easier to
verify. In particular, the condition on the continuous di�erentiability of at is
usually easy to verify. To show the di�erentiability of at just recall that if the
partial derivatives of a function exist and are continuous the function is di�erentiable. Then
recall that and hence its di�erentiability with respect to (say)

follows if is continuously di�erentiable at . In e�ect, for �nite state-
action spaces, di�erentiability at follows (and the conditions of the theorem are satis�ed)
as long as for any state-action pair, the maps have continuous partial
derivatives at .

Proof: The proof is based on a short calculation that starts with writing the value di�erence
identity for , multiplied from the right by , taking derivatives and then letting

.

The details are as follows: Recall from Calculus 101 the following result: Assume that
 satis�es at least one of the two conditions:

Then is di�erentiable at and

Let be two memoryless policies. By the value di�erence identity,

where the last equality just used that that . Now let
 and and multiply the value di�erence identity from the left by to get

Now, focusing on the �rst term on the right-hand-side, let

Provided that is su�ciently regular in a neighborhood of (to be discussed later),
gives that

x ↦ fπx
x = θ0

x ↦ gπx
x = θ0

~νπx
μ v = ∑∞

t=0 γ
tνP t

πx
v x1

x ↦ νMπx
Pv x = θ0

θ0

(s, a) x ↦ πx(a|s)
x = θ0

vπx − vπθ0 μ

x = θ0

f = f(u, v)

 exists and is continuous in a neighborhood of and
exists;

1 z ↦ ∂
∂v f(z,x) z = x ∂

∂u f(u,x)|u=x

 exists and is continuous in a neighborhood of and
exists.

2 z ↦ ∂
∂u f(x, z) z = x ∂

∂v f(x, v)|v=x

z ↦ f(z, z) z = x

d

dx
f(x,x) =

∂
∂u

f(x,x) +
∂
∂v

f(x,x) . (2)

π′,π

vπ
′
− vπ = (I − γPπ′)−1[Tπ′vπ − vπ]

= (I − γPπ′)−1[Mπ′qπ − vπ] ,

Tπ′vπ = Mπ′(r + γPvπ) = Mπ′qπ

π′ = πx π = πθ0 μ

μ(vπx − vπθ0) = ~νπx
μ [Mπx

qπθ0 − vπθ0] . (3)

f(u, v) = ~νπu
μ Mπv

qπθ0 . (4)

f (x,x) (2)

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 4/17

Taking the derivative of both sides of with respect to and using the above display we get

Now let . Then, . Hence, the �rst and the third term of the

above display cancel each other and we get

Finally, the conditions to apply to our in are met by our assumption on and ,
�nishing the proof.

When the action-space is discrete and are stochastic policies, we can further manipulate
the expression we obtained. In particular, in this case

and thus, for �nite ,

While this can be used as the basis of evaluating (or approximating) gradient, it may be
worthwhile to point out an alternate form which is available when . In this case,
using the chain rule we get

Using this in we get

which has the pleasant property that it takes the form of an expected value over the actions of
the score function of the policy map correlated with the action-value function.

d

dx
f(x,x) =

d

du
~νπu
μ Mπx

qπθ0 |u=x +
d

dv
~νπx
μ Mπv

qπθ0 |v=x

(3) x

d

dx
J(x) =

d

dx
μ(vπx − vπθ0) =

d

du
~νπu
μ Mπx

qπθ0 |u=x +
d

dv
~νπx
μ Mπv

qπθ0 |v=x +
d

dx
~νπx
μ vπθ0 .

x = θ0 Mπx
qπθ0 = Mπθ0

qπθ0 = vπθ0

d

dx
J(πx)|x=θ0 =

d

dv
~ν
πθ0
μ Mπv

qπθ0 |v=θ0 .

(2) f (4) fπ gπ
■

πθ

(Mπx
qπθ0)(s) = ∑

a

πx(a|s)qπθ0 (s, a)

A

d

dx
(Mπx

qπθ0)(s) = ∑
a

d

dx
πx(a|s)qπθ0 (s, a) . (5)

πx(a|s) > 0

d

dx
logπx(a|s) =

d
dx
πx(a|s)

πx(a|s)
.

(5)

d

dx
(Mπx

qπθ0)(s) = ∑
a

πx(a|s)(
d

dx
logπx(a|s))qπθ0 (s, a) , (6)

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 5/17

Before moving on it is worth pointing out that an equivalent expression is obtained if
 above is shifted by an arbitrary constant which may depend on or but not .

Indeed, since , di�erentiating both sides with respect to

gives . Hence, we also have

This may have signi�cance when using simulation to evaluate derivatives: One may attempt
to use an appropriate “bias” term to reduce the variance of the estimate of the gradient.
Before discussing simulation any further, it may be also worthwhile to discuss what happens
when the action-space is in�nite.

For countable in�nite action spaces, the only di�erence is that may not always hold. An
easy su�cient condition for this to hold is that is summable, or

equivalently, is -summable/integrable.

For uncountably in�nite action spaces, this argument works with the minimal necessary
changes. In the most general case, is a probability measure over and its derivative
is a vector-valued measure. The formulae derived above (e.g.,) remain valid if we replace
the sum with an integral when is given in the form of a density with respect to some
�xed measure over :

In fact, this is a strictly more general form: is a special case of when is set to the
counting measure over .

In the special case when (a Dirac at), in words, when we have a
deterministic policy map and is di�erentiable with respect to , it is better to start from the
formula given in the theorem.

Indeed, in this case,

and hence

and thus, if either is �nite or an appropriate regularity condition holds,

qπθ0 (s, a) θ0 s a

∑a πx(a|s)b(s, θ0) = b(s, θ0) x

∑a
d
dx πx(a|a)b(s, θ0) = 0

d

dx
(Mπx

qπθ0)(s) = ∑
a

πx(a|s)(
d

dx
logπx(a|s))(qπθ0 (s, a) − b(s, θ0)) . (7)

(5)
∑a ∥ d

dx
πx(a|s)∥ |qπθ0 (s, a)|

∥ d
dx

logπx(a|s)∥ |qπθ0 (s, a)| πx(⋅|s)

πθ(⋅|s) A

(7)
πθ(⋅|s)

λ A

d

dx
(Mπx

qπθ0)(s) = ∫
A

πx(a|s)(
d

dx
logπx(a|s))(qπθ0 (s, a) − b(s, θ0))λ(da) . (8)

(7) (8) λ

A

πθ(⋅|s) = δfθ(s)(⋅) fθ(s)
f θ

(Mπx
qπθ0)(s) = qπθ0 (s, fθ(s))

d

dx
(Mπx

qπθ0)(s) =
d

dx
qπθ0 (s, fx(s))

S

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 6/17

If is di�erentiable and is also di�erentiable at for every
then

which is known as the “deterministic policy gradient formula”.

The idea of gradient methods is to make small steps in the parameter space in the direction
of the gradient of an objective function that is to be maximized. In the context of policy
search, this works as follows: If denotes the parameter vector in round ,

where for di�erentiable, is the “gradient” (transpose of derivative).
Above, is a positive tuning parameter, called the “stepsize” of the update. The idea is that
the “gradient” points in the direction where the function is expected to grow. Indeed, since
by de�nition,

if ,

or

For any su�ciently small so that the term (in absolute value) is below , we
see that the right-hand side is positive, hence so is the left-hand side, as claimed. This
simple observation is the basis of a huge number of algorithmic variants. In the lack of extra
structure the best we can hope from a gradient method is that it will end up in the vicinity of
a stationary point. In the presence of extra structure (.e.g, concave function to be
maximized), convergence to a global maximum can be guaranteed.

In all cases the key to the success of gradient methods is the appropriate choice of the
stepsizes; these choices are based on a re�nement of the above simple argument that shows

d

dx
J(πx)|x=θ0 = ~ν

πθ0
μ

d

dx
qπθ0 (⋅, fx(⋅))|x=θ0 .

a ↦ qπθ0 (s, a) x ↦ fx(s) x = θ0 s

d

dx
J(πx)|x=θ0 = ~ν

πθ0
μ

∂

∂a
qπθ0 (⋅, fθ0(⋅))

d

dx
fx(⋅)|x=θ0 ,

Gradient methods

xi ∈ R
d i

xi+1 = xi + αi∇xJ(πx)|x=xi
,

f ∇xf = (d
dx
f)⊤

αi

f(x′) = f(x) + f ′(x)(x′ − x) + o(∥x′ − x∥)

x′ = x + δ(f ′(x))⊤

f(x + δ(f ′(x))⊤) = f(x) + δ∥f ′(x)∥2
2 + o(|δ|) ,

f(x + δ(f ′(x))⊤) − f(x)

δ
= ∥f ′(x)∥2

2 + o(1) ,

δ o(1) ∥f ′(x)∥2
2

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 7/17

that moving towards the direction of the gradient helps. There are also ways of “speeding
up” convergence; these “acceleration methods” use a re�ned iteration (two iterates updated
simultaneously) and can greatly speed up convergence. As there are many excellent texts that
describe various aspects of gradient methods which cover these ideas, we will not delve into
them any further, but I will rather give some pointers to this literature in the endnotes.

The elephant in the room here is that the gradient of is not readily available. The next best
thing then is to attempt to build an estimate of . In the planning setting, the
question is whether one can get reasonable estimates of this gradient using a simulator.

Generally speaking there are two types of errors when construction an estimate of the
gradient: The one that is purely random, and the one that is not. De�ning ,

 measures the “bias” of the gradient estimate, while is
the noise. Gradient methods with decreasing (or small) stepsizes naturally “average out” the
noise. The version of gradient methods that are able to do this are called stochastic gradient
methods. Naturally, these methods are slower when the noise is larger and in general cannot
converge faster than how fast the noise averages out. In particular, in persistent noise (i.e.,
noise with nonvanishing variance), the best rate available for stochastic gradient methods is

. While this can be slower than what can be achieved without noise, if the iteration
cost is polynomial in the relevant quantities, the total cost of achieving an stationary
point can be bounded by a polynomial in these quantities and .

When the gradient estimates are biased, the bias will in general put a limit on how close a
gradient method can get to a stationary point. While generally a zero bias is preferred to a
nonzero bias, a nonzero bias which is positively aligned with the gradient (

) does not hurt (again, for small stepsizes). When there is no way to
guarantee that the bias is positively aligned with the gradient, one may get back into control
by making sure that the magnitude of the bias is small relative to the magnitude of the
gradient.

The next question is of course, how to estimate the gradient. For this many approaches have
been proposed in the literature. When a simulator is available, as in our case, a
straightforward approach is to start from the policy gradient theorem. Indeed, under mild
regularity conditions (e.g., if there are �nitely many states) together with gives

J

G ∇xJ(πx)

Gradient estimation

g(x) = E[G]
b(x) = ∇xJ(πx) − g(x) G − g(x)

O(1/√t)
ε > 0

1/ε2

⟨b(x), ∇xJ(πx)⟩ ≥ 0

(1) (8)

d

dx
J(πx) = ∫

S

~νπx
μ (ds)∫

A

πx(a|s)(
d

dx
logπx(a|s))(qπx(s, a) − b(s,x))λ(da) . (9)

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 8/17

Now note that is a probability measure over . Let be an

in�nite sequence of state-action pairs obtained by simulating policy starting from
. In particular, and for any . In addition, de�ne

 to be independent of each other and from the trajectory and have a
geometric distribution with parameter . Then,

is an unbiased estimate of :

The argument to show this has partially be given earlier in Lecture 8. One can also show that

 has a �nite covariance matrix, as well as that the expected e�ort to obtain is .

Given the hardness result presented in the previous lecture, there is no hope that gradient
methods or any other method will �nd the global optima of the objective function in policy
search in a policy-class agnostic manner. To guarantee computational e�ciency, one then

Gradient ascent to �nd a good policy (“vanilla policy gradients”) is one possible approach to
take even if it faces these restrictions. In fact, gradient ascent in some cases will �nd a
globally optimal policy.

In particular, it has been long known that with small enough stepsizes gradient ascent
converges at a reasonable speed to a global optimum provided that two conditions hold:

An example when both of these conditions are met is the direct policy parameterization,
which does not allow any compression and is thus not helpful per se, but can serve as a test-
case to see how far policy gradient (PG) methods can be pushed.

(1 − γ)~νπx
μ S S0,A0,S1,A1, …

πx

S0 ∼ μ At ∼ πx(⋅|St) St+1 ∼ PAt
(St) t ≥ 0

T1,T2 S0,A0,S1,A1, …
1 − γ

G =
1

1 − γ

d

dx
logπx(AT1 |ST1) (

T2−1

∑
t=0

rAT1+t
(ST1+t) − b(ST1 ,x))

d
dx
J(πx)

E[G] =
d

dx
J(πx) .

G G O(1
1−γ)

Vanilla policy gradients (PG) with some special policy classes

either needs to give up on convergence to a global optima, or1

give up on generality, i.e., give up on that the method should work for any policy class
and/or policy parameterization.

2

The objective function is smooth (its derivative is Lipschitz continuous);1 f

The objective function is gradient dominated, i.e., with some constants , ,
satis�es for any .

2 c > 0 p ≥ 1 f

supx f(x) − f(x′) ≤ c∥f ′(x′)∥p
2 x′ ∈ R

d

https://en.wikipedia.org/wiki/Geometric_distribution
https://rltheory.github.io/lecture-notes/planning-in-mdps/lec8/
https://rltheory.github.io/lecture-notes/planning-in-mdps/lec8/

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 9/17

In this case, the parameter vector is dimensional. By allowing “two-dimensional
index”, , that is, the parameters encode the action selection probabilities in a
direct manner. In this case, since the components of represent probabilities, they need to be
nonnegative and the appropriate components needs to sum to one. Hence, for an
appropriate set . Accordingly, one needs to change gradient ascent.

This is done as follows: When a proposed update moves the parameter vector outside of ,
the proposed updated parameter vector is “back-projected” to . For the projection there
are a number of reasonable options, such as choosing the point within which is closest to
the proposed point in the standard Euclidean distance. With this modi�cation, gradient
ascent can be shown to converge at a reasonable speed in this case. This parallels the
methods that were developed for the tabular case (policy iteration, value iteration). In fact,
the algorithm can be seen as a “smoother”, incremental version of policy iteration, which
gradually adjusts the probabilities assigned to the individual actions. Using to denote the
th policy, from the policy gradient theorem one gets

and

Thus, the probability of an action in a state is increased in proportion to the value of that
state.

That the action-value of action at state is multiplied with the discounted occupancy at
induced by using policy started from is a bit of a surprise. In particular, if a state is
inaccessible under policy , the corresponding probabilities will not be updated. In fact,
because this, the above iteration may get stuck at a suboptimal policy. The reader is invited to
construct an example when this happens. To prevent this, it turns out to be su�cient if there
is a constant such that it holds that

where is an optimal policy. Since appears on both sides and is unknown, this
condition does not look to helpful. However, if one chooses to be positive everywhere, the
condition is clearly met. In any case, when holds, gradient dominance and smoothness
can be both veri�ed, which in turn implies that the above update will converge at a geometric
speed, the geometric speed involves an instance dependent constant which has no
polynomial bound in terms of and the size of the state-action space.
Needless to say this is quite unattractive.

θ SA
πθ(a|s) = θs,a

θ

θ ∈ Θ
Θ ⊂ [0, 1]SA

Θ
Θ

Θ

πi i

~πi+1(a|s) = πi(a|s) + αi
~νπi
μ (s)qπi(s, a) ,

πi+1(⋅|s) = arg min
p∈M1(A)

∥p − πi+1(⋅|s)∥2, s ∈ S .

a s s

πi μ

πi

C > 0

~νπ∗

μ (s) ≥ Cμ(s) , for all s ∈ S , (10)

π∗ μ π∗

μ

(10)

Hγ = 1/(1 − γ)

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 10/17

Policy gradient methods can be sensitive to how policies are parameterized. For illustration,
consider still the “tabular case”, just now change the way the memoryless policies are
represented. One possibility is to use the Boltzmann, also known as the softmax
representation. In this case and

A straightforward calculation gives

and hence

where recall that is the discounted state-occupancy measure over the state-action pairs

of policy when the initial state distribution is . The di�erence in the bracket on the right-
hand side is known as the advantage of action and, accordingly, the function

which is a function mapping state-action pairs to reals, is called the advantage function
underlying policy . To justify the terminology, note that policy iteration can be seen as
choosing in each state the action that maximizes the “advantage”. Thus, we expect that we
get a better policy if the “probability mass” in the action distribution is shifted towards
actions with a larger advantage. Note though that advantages (as de�ned above) can also be
negative and in fact if is optimal, all actions have nonnegative advantages only.

The gradient ascent rule prescribes that

where denotes componentwise product. While this is similar to the previous update, now
the meaning of parameters is quite di�erent. In fact, just because a parameter is increased
does not necessarily mean that the probability of the corresponding action is increased: This
will only happen if the increase of this parameter exceeds that of the other parameters “at
the same state”. By slightly abusing notation with de�ning , we have

θ ∈ R
S×A

πθ(a|s) =
exp(θs,a)

∑a′ exp(θs,a′)
, (s, a) ∈ S ×A .

∂

∂θs,a
logπθ(a

′|s′) = I(s = s′, a = a′) − πθ(a|s)I(s = s′)

∂
∂θ(s,a)

J(πθ) = ∑
s′

~νπθ
μ (s′)∑

a′

πθ(a
′|s)

∂
∂θs,a

logπθ(a
′|s′)qπθ(s′, a′)

= νπθ
μ (s, a) (qπθ(s, a) − vπθ(s)) ,

νπ
μ

π μ

a

a
π = qπ − vπ ,

π

π

θi+1 = θi + αiν
πθi
μ ∘ a

πθi ,

∘

πi = πθi

(|) (|) (() ()) ()

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 11/17

Just like in the previous update rule, we also see the occupancy measure “weighting” the
update. This is again not necessarily helpful and if anything, again, speaks to the
arbitrariness of gradient methods. And while this does not entirely stop policy gradient to
�nd an optimal policy, and again, one can even show that the speed is geometric, though, as
before, the algorithm altogether fails to run in polynomial time in the relevant quantities. For
this theorem which we give without proof recall that .

Theorem (PG is slow with Boltzmann policies): There exists universal constants
 such that for any , if then one can �nd a discounted MDP

with states and actions, setting to be the uniform distribution and initializing the
parameters so that is the uniform random policy, softmax PG with a constant stepsize of

 takes at least

iterations.

As one expects that without any compression, the chosen planner should behave reasonably,
this rules out the “vanilla” version of policy gradient.

In fact, a quite unsatisfactory property of gradient ascent that the speed at which it converges
can greatly depend on the parameterization used. Thus, for the same policy class, there are
many possible “gradient directions”, depending on the parameterization chosen. What is a
gradient direction for one parameterization is not necessarily a gradient direction for
another one. But what is common about these directions that an in�nitesimal step along
them is guaranteed increase the objective. One can in fact take a direction obtained with a
parameterization and look at what direction it gives with another parameterizations. To get
some order, consider transforming all these directions into the space that corresponds to the
direct parameterization. It is not hard to see that all possible directions that are within 90
degrees of the gradient direction with this parameterization can be obtained by considering
an appropriate parameterization.

πi+1(a|s) ∝ πi(a|s) exp(αiν
πi
μ (s, a)a

πi(s, a)) . (11)

Hγ = 1/(1 − γ)

γ0, c,C > 0 γ0 < γ < 1 S > CH 6
γ

S 3 μ

π0

α > 0

c

α
S2Ω(Hγ)

Natural policy gradient (NPG) methods

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 12/17

More generally, regardless of parameterization, all directions within 90 degrees of the
gradient direction are ascent directions. This motivates changing the stepsize from a
scalar to a matrix . Clearly, to keep the angle between the original gradient direction and
the transformed direction below 90 degrees, has to hold. For symmetric,
this restricts the set of matrix “stepsizes” to the set of positive de�nite matrices (still, a large
set).

There are many ways to choose a matrix stepsize. Newton’s method is to choose it so that the
direction is the “best” if the function is replaced by its local quadratic approximation. This
provably helps to reduce the number of iterations when the objective function is “ill-
conditioned”, though all matrix stepsize methods incur additional cost per each iteration,
which will often o�set the gains.

Another idea, which comes from statistical problems where one often works with
distributions is to �nd the direction of update which coincides with the direction one would
obtain if one used the steepest descent direction directly in the space of distributions where
distances are measured with respect to relative entropy. In some cases, this approach, which
was coined the “natural gradient” approach, has been shown to give better results, though
the evidence is purely empirical.

As it turns out, the matrix stepsize to be used with this approach is the (pseudo)inverse of the
so-called Fisher information matrix. In our context, for every state, we have distributions
over the actions. Fixing a state , the Fisher information matrix becomes

To get the “information rate” over the states, one can sum these matrices up, weighted by
the discounted state occupancy measure underlying and to get

The update rule then takes the form

where for a square matrix , denotes the pseudoinverse of . Interestingly, the update
direction can be obtained without calculating and inverting it:

Proposition: We have

αi

Ai g

Aig g⊤Aig ≥ 0 Ai

s

Fx(s) =
d

dx
logπx(⋅|s)

d

dx
logπx(⋅|s)⊤ .

μ πx

F(x) := νπx
μ Fx .

xi+1 = xi + αiF(xi)
†∇xJ(πx) ,

A A† A

F

2

https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
https://en.wikipedia.org/wiki/Fisher_information

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 13/17

where and chooses the minimum -norm solution if multiple
minimizers exist.

Proof: Just recall the formula that gives the solution to a least-squares problem. The details
are left to the reader.

As an example of how things look like consider the case when takes the form of a
Boltzmann policy:

where is a feature-map. Then, assuming that there are �nitely many
actions,

Then, the natural policy gradient update takes the form

where

In the tabular case , no compression),

and thus

Note that this update rule eliminates the term term that we have previously seen

(cf.).

NPG is known to enjoy a reasonable speed of convergence, which gives altogether polynomial
planning time. This is promising. No similar results are available for the nontabular case.

(1 − γ)F(x)†∇xJ(πx) = arg min
w∈Rd

νπx
μ (w⊤∇x logπx(⋅|⋅) − a

πx)
2

,

a
πx = qπx − vπx arg min ∥ ⋅ ∥2

■

πx

πx(a|s) ∝ exp(x⊤ϕ(s, a)) ,

ϕ : S ×A → R
d

∇x logπx(a|s) = ϕ(s, a) −∑
a′

πx(a′|s)ϕ(s, a′)

ψx(s,a)

.

xi+1 = xi + αiwi ,

wi = arg min
w∈Rd

νπx
μ (w⊤ψx − a

πxi)
2

(d = SA

wi(s, a) = a
πxi(s, a)

πi+1(a|s) ∝ πi(a|s) exp(αia
πi(s, a)) = πi(a|s) exp(αiq

πi(s, a)) .

νπi
μ (s, a)

(11)

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 14/17

Note that if we (arbitrarily) change the de�nition of by replacing above with and
with , we get what has been called in the literature Q-NPG:

Note that the only di�erence between Q-NPG and Politex is that in Politex one uses

where is the measure obtained from solving the G-optimal design problem.

The price of not using but using in Q-NPG is that the approximation error in Q-NPG

becomes

where

gives a bound on how much the distribution di�ers from that of obtained when the optimal
policy is followed from . As was argued before, it is necessary that is �nite for policy
gradient methods not to “get stuck” at local optima. However, can be arbitrarily large even
for �nite state-action MDPs; an in fact it is the presence of that makes the policy gradient
with the direct parameterization a slow algorithm.

In contrast, the same quantity in Politex is

Not only the uncontrolled constant is removed, but the dependence on the planning
horizon is also improved. Other than these di�erences, the results available for Q-NPG are
similar to that of Politex and in fact the proof technique to obtain the results is also the same.

For completeness, here is the proof of . For the proof recall that for a function
, is the unique linear operator (row vector, in the Euclidean case) that satis�es

wi ψx ϕ aπx

qπx

wi = arg min
w∈Rd

νπx
μ (w⊤ϕ − qπx)

2
.

wi = arg min
w∈Rd

ν̂(w⊤ϕ − qπx)
2

,

ν̂

ν̂ νπx
μ

Cε

(1 − γ)1.5

C =
d~νπ∗

μ

dμ
∞∥ ∥μ

π∗ μ C

C

C

√dε

1 − γ
.

C

The proof of the Calculus 101 result
(2) g : R

d → R

d
dx
g(x0)

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 15/17

Hence, it su�ces to show that

To minimize clutter we will write for (and similarly we write

 for).

By de�nition we have

and

Putting these together we get

where the last equality follows if as , i.e., if

 is continuous at .

That the result also holds under the assumption that is continuous at

 follows from a symmetric argument.

While policy gradient methods remain extremely popular and the idea of directly searching
in the set of policies is attractive, at the moment it appears that they not only lack theoretical
support, but the theoretical results suggest that it is hard to �nd any setting where policy

g(x) = g(x0) +
d

dx
g(x0)(x − x0) + o(∥x − x0∥) as x → x0 .

f(x′,x′) = f(x,x) + (
∂

∂u
f(u,x)|u=x +

∂
∂v

f(x, v)|v=x)(x′ − x) + o(∥x′ − x∥) .

∂
∂u f(x′,x) ∂

∂u f(u,x)|u=x′

∂
∂v f(x,x′) ∂

∂v f(x, v)|v=x′

f(x′,x′) = f(x′,x) +
∂

∂v
f(x′,x)(x′ − x) + o(∥x′ − x∥)

f(x′,x) = f(x,x) +
∂

∂u
f(x,x)(x′ − x) + o(∥x′ − x∥) .

f(x′,x′) = f(x,x) + (
∂

∂v
f(x′,x) +

∂

∂u
f(x,x))(x′ − x) + o(∥x′ − x∥)

= f(x,x) + (
∂
∂v

f(x,x) +
∂

∂u
f(x,x))(x′ − x)

+(
∂
∂v

f(x′,x) −
∂
∂v

f(x,x))(x′ − x) + o(∥x′ − x∥)

= f(x,x) + (
∂
∂v

f(x,x) +
∂

∂u
f(x,x))(x′ − x) + o(∥x′ − x∥) .

∂
∂v f(x′,x) − ∂

∂v f(x,x) = o(1) x′ → x

x′ ↦ ∂
∂v f(x′,x) x′ = x

x′ ↦ ∂
∂u f(x,x′)

x′ = x ■

Summary

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 16/17

gradient methods would be provably competitive with alternatives. At minimum, they need
careful choices of policy parameterizations and even in that case the update rule may need to
be changed to guarantee e�ciency and e�ectiveness, as we have seen above. As an approach
to algorithm design their main advantage is their generality and a strong support through
various software libraries. Compared to vanilla “dynamic programming” methods they make
generally smaller, more incremental changes to the policies, which seems useful. However,
this is also achieved by methods like Politex, which is derived using a “bound minimization”
approach. While this may seem more ad hoc than following gradients, in fact, one may argue
that following gradients is more ad hoc as it fails to guarantee good performance. However,
perhaps the most important point here is that one should not care too much about how a
method is derived, or what “interpretation” it may have (is Politex a gradient algorithm?
does this matter?). What matters is the outcome: In this case how the methods perform. It is
thus wise to learn about all possible ways of designing algorithms, especially since there is
much room for improving the performance of current algorithms.

Philip Thomas (2014, see citation below) takes a careful look at the claims surrounding
natural gradient descent. One claim that is often heard is that natural gradient descent will
speed up convergence. This is usually back up by giving a demonstration (e.g., Kakade, 2002,
or Amari, 1998). However, it is far from clear whether this speedup will necessarily happen.
As it turns out, this is far from being true. In fact, natural policy gradient can cause
divergence even where following the normal gradient is guaranteed to converge to a global
optimum. An example of this is given in Section 6.5 of the paper of Thomas (2014).

Amari, S. Natural gradient works e�ciently in learning.Neural Computation, 10:251–276,
1998.

Kakade, S. A natural policy gradient. In Advances in Neural Information Processing
Systems, volume 14, pp.1531–1538, 2002.

Bagnell, J. A. and Schneider, J. Covariant policy search. In Proceedings of the International
Joint Conference on Arti�cial Intelligence, pp. 1019–1024, 2003.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (1999). Policy gradient
methods for reinforce-ment learning with function approximation. In Neural Information
Processing Systems 12, pages 1057–1063.

Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. 2014. “Deterministic Policy Gradient Algorithms.” In ICML.
http://hal.inria.fr/hal-00938992/.

Notes

References
•

•

•

•

•

1/8/23, 9:45 PM Policy gradients | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec16/ 17/17

Bhandari, Jalaj, and Daniel Russo. 2019. “Global Optimality Guarantees For Policy
Gradient Methods,” June. https://arxiv.org/abs/1906.01786v1.

Agarwal, Alekh, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. 2019. “On the Theory
of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift.” arXiv
[cs.LG]. arXiv. http://arxiv.org/abs/1908.00261.

Mei, Jincheng, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. 2020. “On the
Global Convergence Rates of Softmax Policy Gradient Methods.” arXiv [cs.LG]. arXiv.
http://arxiv.org/abs/2005.06392.

Zhang, Junyu, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. 2020.
“Variational Policy Gradient Method for Reinforcement Learning with General Utilities.”
arXiv [cs.LG]. arXiv. http://arxiv.org/abs/2007.02151.

Bhandari, Jalaj, and Daniel Russo. 2020. “A Note on the Linear Convergence of Policy
Gradient Methods.” arXiv [cs.LG]. arXiv. http://arxiv.org/abs/2007.11120.

Chung, Wesley, Valentin Thomas, Marlos C. Machado, and Nicolas Le Roux. 2020.
“Beyond Variance Reduction: Understanding the True Impact of Baselines on Policy
Optimization.” arXiv [cs.LG]. arXiv. http://arxiv.org/abs/2008.13773.

Li, Gen, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. 2021. “Softmax Policy
Gradient Methods Can Take Exponential Time to Converge.” arXiv [cs.LG]. arXiv.
http://arxiv.org/abs/2102.11270.

Thomas, Philip S. “GeNGA: A Generalization of Natural Gradient Ascent with Positive and
Negative Convergence Results.” ICML 2014.
http://proceedings.mlr.press/v32/thomasb14.pdf.

The paper to read about natural gradient methods:

Martens, James. 2014. “New Insights and Perspectives on the Natural Gradient Method,”
December. https://arxiv.org/abs/1412.1193v9. Last update: September, 2020.

Copyright © 2020 RL Theory.

•

•

•

•

•

•

•

•

•

