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We start by recapping the de�nition of MDPs and then �rm up the loose ends from the
previous lecture: why do the probability distributions  exist and how are they de�ned?

We then continue with the introduction of what we call the Fundamental Theorem of
Dynamic Programming and end with the discussion of value iteration.

A Markov decision Process (MDP) is a 5-tuple , where  represents
the state space,  represents the action space,  collects the next state
distributions for each state-action pair (to represent the transition dynamics),

 gives the immediate rewards incurred for taking a given action in a given
state, and  is the discount factor. As said before, for simplicity, the state set 
and the action set  are �nite.

A policy  is an in�nite long sequence where for each ,
 assigns a probability distribution to histories of length 

. (For  we use  to denote the set of nonnegative measures  over  that
satisfy .) Following a policy in an MDP means that the distribution of the
actions in each time step  will follow what is prescribed by the policy for whatever
the history is at that time.

When a policy is used in an MDP, the interconnection of the policy and the MDP, together
with a start-state distribution, results in a distribution  such that for the in�nite long
sequence of state-action pairs , , and

 for all  where  is the history at
time step . This closed loop interaction (or interconnection) of the policy and the MDP is
shown in the �gure below.

2. The Fundamental Theorem
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One loose end from the previous lecture was the existence of the probability measures .

For this, we have the following result:

Theorem (existence theorem): Fix a �nite MDP  with state space  and action space .
Then there exists a measurable space  and a sequence of random elements

 over this space, ,  for , such that for any policy
 of the MDP  and any probability measure  over , there exists

a probability measure  over  satisfying the following properties:

Furthermore, uniqueness holds in the following sense: if  together with

 also satisfy the conditions of the de�nition with  denoting the

associated probability measures for speci�c choices of  then for any , , the joint

distribution of  under  and that of  under  are

identical.

Proof: Use the Ionescu-Tulcea theorem (Theorem 3.3 in the “bandit book”, though the
theorem statement there is weaker in that the uniqueness property is left out). 
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Property 3 above is known as the Markov property and is how MDPs derive their name.
Note that implicit in the statement of this result is that  and  are endowed with the
discrete -algebra. This is because we want both  and  to be events for any

 and  (these appear in the conditions underlying properties 1-3).

Note that the result does not point to any singular measurable space. Indeed, there are
many ways to choose . However, as long as we are only concerned with properties
of the distributions of state-action trajectories, thanks to the uniqueness part of the
theorem, no ambiguity will arise from this. As a result, in general, we will not care about
the choice of : Any choice as given in the theorem will work. However, for some
proofs, it will be convenient to choose , the set of in�nite long trajectories as ,
while setting ,  ( ) and

choosing , which the smallest  algebra that makes  measurable
for any . We will call the resulting probability space the canonical probability space
underlying the MDP.

As usual, we use  to denote the expectation operator underlying a probability measure .
When the dependence on  or  is important, we use . We may drop any of these, when

the dropped quantity is clear from the context. We will pay special attention to start state
distributions concentrated on a single state. When this is state , the distribution is
denoted by : this is the well-known Dirac distribution with an atom at . The reason we
pay special attention to these is because these in a way form the basis of all start state
distributions (and in fact quantities that depend linearly on start state distributions). We
will use the shorthand  for . Similarly, we use  for .

De�ne the return over a trajectory  as

The value function  of policy  maps states to values and in particular for a state ,
 is de�ned via : This is the expected return under the distribution

induced by the interconnection of policy  and the MDP when the start state is . Note
that  is well-de�ned. This is because it is the expectation of a quantity that is a
function of the trajectory ; for an explanation see the end-notes.
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The standard goal in an MDP is to identify a policy that maximizes this value in every
state. A policy achieving this is known as an optimal policy. Whether an optimal policy
exists at all is not clear at this stage. In any case, if it exist, an optimal policy must satisfy

 where  is de�ned by

By the de�nition of the optimal value function, we have  for all  and
any policy . We also use  to express this. In general,  for two functions 
that are de�ned over the same domain and take values (say) in the reals, if 
holds for all the possible elements  of their common domain. We similarly de�ne .

We will also identify functions with vectors and allow vector-space operations on them.
All vectors, unless otherwise stated, are column vectors. The symbol  is de�ned as a
vector of ones. The length of this vector can change depending on the context. In this
lecture, it will be -dimensional. This symbol will be very useful in a number of
calculations. We start with a de�nition that uses it.

Let . A policy  is said to be -optimal if

Finding an -optimal policy with a positive  should intuitively be easier than �nding an
optimal policy.

If optimal policies would need to remember the past of arbitrary length, it would be
hopeless to search for e�cient algorithms that can compute them as even describing
them could take in�nite time. Luckily, this is not the case. In �nite MDPs, it will turn out
to be su�cient to consider policies that use only the most recent state without losing
optimality: this is the subject of the fundamental theorem of MDPs, which we will give
shortly. We call the policies that take only the most recent state into account memoryless.

Formally, a memoryless policy can be identi�ed with a map from the states to probability
distributions over the actions: . Given , the memoryless policy, using
our previous policy notation, is , where we
abuse notation by using  in place of . Thus, as expected, the policy itself
“forgets” the past and just uses the most recent state in assigning probabilities to the
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individual actions. Under a distribution induced by interconnecting a memoryless policy
with an MDP, the sequence of state-action pairs forms a Markov chain.

In what follows, by abusing notation further, when it comes to a memoryless policy, we
will identify  with  and will just write .

For building up to the proof of the fundamental theorem, we start with the concept of
discounted occupancy measures.

Given a start state distribution  and a policy , the (discounted) occupancy
measure  induced by  and  and the underlying MDP  is

de�ned as

Interestingly, the value function can be represented as an inner product between the
immediate reward function  and the occupancy measure :

where  is the indicator of the event , which gives the
value of one when the event holds (i.e.,  and ), and gives zero otherwise.
That the summation over  can be moved outside of the expectation in the �rst
equality follows because expectations are linear. That the in�nite sum can be moved
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outside is more subtle: this follows from Lebesgue’s dominated convergence theorem.
See, for example, Chapter 2 of Lattimore & Szepesvári (2020).

With the above equation, we see that the problem of maximizing the expected reward for
a given initial distribution is the same as choosing a policy that “stirs” the occupancy
measure to maximally align with the reward vector . A better alignment will result in a
higher value for the policy. This is depicted in the �gure below.

A key step in proving the su�ciency of memoryless policies for optimal control is the
following result:

Theorem: For any policy  and a start state distribution , there exists a
memoryless policy  such that

Proof (hint): First de�ne the occupancy measure over the state space
. Then show that the theorem statement holds for the policy 

de�ned as follows:

where  is an arbitrary distribution. To do this, expand  using the

de�nition of discounted occupancy measures and use algebra.

r
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π0(a) otherwise,
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■

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec2/(https://tor-lattimore.com/downloads/book/book.pdf)
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Note that it is crucial that the memoryless policy obtained depends on the start state
distribution: The reader should try to convince themselves that there are non-
memoryless policies whose value function cannot be reproduced by a memoryless policy
at every state.

The last de�nitions and results that we need before stating the fundamental theorem
concern what are known as Bellman operators.

Fix a memoryless policy . Recall that  is the cardinality (size) of . First, de�ne
 to be the expected reward under policy  for a given state .

Again, we overload the notation and let  denote a vector whose th element
. Similarly, we de�ne  and let
 denote the stochastic transition matrix where the element in the th row

and th column . Note that each row of  sums to one:

The Bellman/policy evaluation operator underlying , , is de�ned as

or, in short,

where . The Bellman operator performs a one-step lookahead (also called a
Bellman lookahead) on the value function. We will use the notations , ,
and  interchangeably.  is also known as the policy evaluation operator for the
policy .

The Bellman optimality operator  is de�ned as

We use  to denote the maximum-norm: . The maximum-norm
is a “good friend” of the operators we just de�ned. This is because stochastic matrices,

Bellman Operators, Contractions

π S S
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Pπ1 = 1 .

π Tπ : RS → RS

Tπv(s) = ∑
a

π(a|s){ra(s) + γ∑
s′

Pa(s, s′)v(s′)}

= ∑
a
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viewed as operators and “maximizing” are “good friends” of this norm. All this results in
the following proposition:

Proposition ( -contraction of the Bellman Operators): Given any two vectors 
and any memoryless policy ,

The proposition can be proved by elementary algebra and the complete proof can be found
in Appendix A.2 of Szepesvári (2010).

For action , we will �nd it useful to also de�ne the operator  which
matches  with the memoryless policy which in every state chooses action . Of course,
this operator, being a special case, satis�es the above contraction property as well. This
can be seen as performing a one-step lookahead with a �xed action.

From Banach’s �xed point theorem, we get the following corollary:

Proposition (Fixed-point iteration): Given any  and any memoryless policy ,

De�nition: A memoryless policy  is greedy w.r.t. to a value function  if in
every state , with probability one  chooses actions that maximize

.

γ u, v ∈ RS

π

, and1 ∥Tπu − Tπv∥∞ ≤ γ∥u − v∥∞

.2 ∥Tu − Tv∥∞ ≤ γ∥u − v∥∞

a ∈ A Ta : RS → RS

Tπ a

u ∈ R
S π

 and in particular for any , 
where  is the unique vector/function that satis�es ;

1 vπ = limk→∞ T k
π u k ≥ 0 ∥vπ − T k

π u∥∞ ≤ γk∥u − vπ∥∞

vπ Tπv
π = vπ

 is well-de�ned and in particular for any ,
. Furthermore,  is the unique vector/function that

satis�es .

2 v∞ = limk→∞ T ku k ≥ 0
∥v∞ − T ku∥∞ ≤ γk∥u − v∞∥∞ v∞

Tv∞ = v∞

The Fundamental Theorem
π v : S → R

s ∈ S π

(Tav)(s) = ra(s) + γ⟨Pa(s), v⟩

https://en.wikipedia.org/wiki/Banach_fixed-point_theorem
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Note that there can be more than one action that maximizes the (one-step) Bellman
lookahead  at any given state (in case there are ties). In fact, ties can be
extremely common: Just imagine “duplicating an action” in every state (i.e., the new
action has the same associated transitions and rewards as the copied one). If the copied
one was maximizing the Bellman lookahead at some state, the new action will do the
same. Because we have �nitely many actions, a maximizing action always exist. Thus, we
can always “take” a greedy policy w.r.t. any .

Proposition (Characterizing greedyness): A memoryless policy  is greedy w.r.t. 
if and only if

With this, we are ready to state what I call the Fundamental Theorem of MDPs:

Theorem (Fundamental Theorem of MDPs): The following hold true in any �nite MDP:

The equation  is known as the Bellman optimality equation and the second part of
the result can be stated in words by saying that the optimal value function satis�es the
Bellman optimality equation. Also, our previous proposition on �xed-point iteration,
where we already came across the Bellman optimality equation, foreshadows a way of
approximately computing  that we will get back to after the proof.

Proof: The proof would be easy if we only considered memoryless policies when de�ning
. In particular, letting  stand for the set of memoryless policies of the given MDP,

de�ne

(Tav)(s)

v ∈ RS

π v ∈ R
S

Tπv = Tv .

Any policy  that is greedy with respect to  is optimal: ;1 π v∗ vπ = v∗

It holds that .2 v∗ = Tv∗

v = Tv

v∗

v∗ ML

~v∗(s) = sup
π∈ML

vπ(s) for all s ∈ S .
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As we shall see soon, it is not hard to show the theorem just with  replaced everywhere
with . That is:

This is what we will show in Part 1 of the proof, while in Part 2 we will show that .
Clearly, the two parts together establish the desired result.

Part 1: The idea of the proof is to �rst show that

and then show that for any greedy policy , .

The displayed equation follows by noticing that  holds for all memoryless policies
 by de�nition. Applying  on both sides, using , we get . Taking

the supremum of both sides over  and noticing that  for any ,
together with the de�nition of  gives .

Now, take any memoryless policy  that is greedy w.r.t. . Thus, .

Combined with , we get

Applying  on both sides and noticing that  keeps the inequality intact (i.e., for any
 such that  we get ), we get

where the last inequality follows from . With the same reasoning we get that for any
,

Now, by our proposition, the �xed-point iteration  converges to . Hence, taking
the limit above, we get

This, together with  shows that .

Finally, .

v∗

~v∗

Any policy  that is greedy with respect to  satis�es ;1 π ~v∗ vπ = ~v∗

It holds that .2 ~v∗ = T~v∗

~v∗ = v∗
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π vπ ≥ ~v∗
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π Tv = supπ∈ML Tπv v
~v∗ (1)

π ~v∗ Tπ
~v∗ = T~v∗

(1)

Tπ
~v∗ ≥ ~v∗ . (2)

Tπ Tπ

u, v u ≤ v Tπu ≤ Tπv

T 2
π

~v∗ ≥ Tπ
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(2)
k ≥ 0

T k
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π
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T k
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Part 2: It remains to be shown that . Let  be the set of all policies. Because
, . Thus, it remains to show that

To show this, we will use the theorem that guaranteed that for any state-distribution 
and policy  (memoryless or not) we can �nd a memoryless policy, which we will call for
now , such that . Fix a state . Applying this result with , we

get

Taking the supremum of both sides over , we get . Since
 was arbitrary, we get , �nishing the proof. 

A property that came up during the proof that we will repeatedly use is that  is
monotone as an operator. The same holds for . For the record, we state these as a
proposition:

Proposition (monotonicity of Bellman operators): For any memoryless policy ,
 holds for any  such that . The same also holds for , the

Bellman optimality operator.

According to the Fundamental Theorem of MDPs, if we have access to the optimal value
function , then we can �nd the optimal policy in an e�cient and e�ective way. We just
have to greedify it w.r.t. to the value function: (abusing the policy notation)

. Such a greedy policy can be found
in  time.

Hence, if we can e�ciently �nd the optimal value function, we will get an e�cient way of
computing an optimal policy. This is to be contrasted with the naive approach to �nding

~v∗ = v∗ Π
ML ⊂ Π ~v∗ ≤ v∗

v∗ ≤ ~v∗ . (3)

μ

π

ML(π) νπ
μ = νML

μ s ∈ S μ = δs

vπ(s) = ⟨νπ
s , r⟩

= ⟨ν
ML(π)
s , r⟩

≤ sup
π′∈ML

⟨νπ′

s , r⟩

= sup
π′∈ML

vπ
′

(s) = ~v∗(s) .

π v∗(s) = supπ∈Π vπ(s) ≤ ~v∗(s)
s ∈ S v∗ ≤ ~v∗

■

Tπ

T

π

Tπu ≤ Tπv u, v ∈ RS u ≤ v T

v∗

π(s) = arg maxa∈A{ra(s) + γ⟨Pa(s), v∗⟩} ∀s ∈ S

O(S2A)
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an optimal policy, which is to enlist all the policies and compare their value functions to
�nd a policy whose value function dominates the value functions of all the other policies.

However, even if we restrict ourselves to just the set of deterministic policies, there are
 such policies and thus this can be a costly procedure.

As it turns out, for �nite MDPs, there is a way to calculate optimal policies in time that is
polynomial in , , and , avoiding the exponential growth of the naive
approach with the size of the state space. Algorithms that can do this belong to the family
of dynamic programming algorithms. For our purposes, we call any algorithm a dynamic
programming algorithm that uses the idea of keeping track of value of states (that is, uses
value functions) while doing its calculations.

The Fundamental Theorem is somewhat surprising: how come that we can �nd policies
whose value function dominates that of all other policies? In a way, the Fundamental
Theorem tells us that the set of value functions of all policies in some MDP (as a set in )
is very special: It has a “vertex” which dominates all the other value functions. This is
quite fascinating. Of course, the key was the Markov property as this gave us the tool to
show the result that allowed us to switch from arbitrary policies to memoryless ones.

By the Fundamental Theorem,  is the �xed point of . By our earlier proposition, which
built on the Banach’s �xed point theorem, the sequence  converges to  at a
geometric rate. In the context of MDPs, the process of repeatedly applying  to some
function is called value iteration. The initial function is usually taken to be the all-zero
function, which we denote by , but, of course, if there is a better initial guess on , that
guess can also be used at initialization. The next result gives a bound on the number of
iterations required to reach an -neighborhood (in the max-norm sense) of :

Theorem (Value Iteration): Consider an MDP with immediate rewards in the 
interval. Pick an arbitrary positive number . Let  and set

Then, for , .

Θ(AS)

S A 1/(1 − γ)

R
S

Value Iteration
v∗ T

{T kv}k≥0 v∗

T

0 v∗

ε v∗

[0, 1]
ε > 0 v0 = 0

vk+1 = Tvk for k = 0, 1, 2, …

k ≥ ln(1/(ε(1 − γ))/ ln(1/γ) ∥vk − v∗∥∞ ≤ ε
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Before the proof recall that

Thus, the e�ective horizon, , whom we met in the �rst lecture, appeared again. Of
course, this is no coincidence.

Proof: By our assumptions on the rewards,  holds for any policy . Hence,

 also holds. By our �xed-point iteration proposition, we get

Solving for the smallest  such that  gives the result.

For �xed , note the mild dependence of the iteration complexity on the target
accuracy : we can expect with only a handful iterations to get in a small vicinity of .
Note also that the total computation cost is  and the space required is at most

, all assuming each value takes up  memory and arithmetic and logic operations
also require  time.

Note that accuracy requirement was set up in the form of additive errors. If the value
function  is of order  (the maximum possible order), a relative accuracy of
order  means setting , making the iteration complexity to be

. However, for controlling the relative error, the more interesting case is
when  takes on small values. Here, we see that the complexity may grow unbounded.
Later, we will see that in a way this lack of �ne-grained error control of value iteration
will mean that value iteration is not ideal for calculating exactly optimal policies.

As noted in the text, value functions are well-de�ned despite that the probability space
 is not uniquely de�ned. In fact, for any  (measurable)

function and for any  and  probability spaces, as long as both  and
 satisfy the requirements postulated in the existence theorem,

Hγ,ε :=
ln(1/(ε(1 − γ)))

1 − γ
≥

ln(1/(ε(1 − γ)))

ln(1/γ)
.

Hγ,ε

0 ≤ vπ ≤ 1
1−γ

1 π

∥v∗∥∞ ≤ 1
1−γ

∥vk − v∗∥∞ ≤ γk∥v∗ − 0∥∞ = γk∥v∗∥∞ ≤
γk

1 − γ
.

k γk/(1 − γ) ≤ ε

■

γ < 1
ε v∗

O(S2Ak)
O(S) O(1)

O(1)

v∗ 1/(1 − γ)
2 ϵ = 0.5/(1 − γ)

ln(2)/(1 − γ)
v∗

Notes

Value functions are well-de�ned

(Ω, F , P) f : (S × A)N → R

(Ω, F , P) (Ω′, F
′, P

′) P

P′

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec2#thm:probex
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, or, introducing  ( ) to denote the expectation
operator underlying  (respectively, ), . It also follows that if we
only need probabilities and expectations over trajectories, it su�ces to choose 
as the canonical probability space induced by the state-action space of the MDP at hand.

The obvious question is what survives of all this in other types of MDPs, such as �nite-
horizon homogenous or inhomogeneous, with or without discounting, total cost (i.e.
negative rewards only), or of course the average cost setting? The story is that the
arguments can be usually made to work, but this is not entirely automatic. The subject is
well-studied and we will give some references and hints later, perhaps even answer some
of these questions.

The �rst thing that changes when we switch to in�nite spaces is that we cannot take the
assumption that the immediate rewards are bounded for granted. This can cause quite a
bit of trouble:  for some policies can be unbounded, and the same holds for . Negative
in�nite values could be especially “hurtful”. (LQR control is the simplest example where
this comes up.)

Another issue is that we cannot take the existence of greedy policies for granted. This
happens already when the number of actions is in�nite (what is the action that maximizes
the reward  where ?). Oftentimes compactness of the action space
and continuity assumptions help with this, though, as much of what we will do will be
approximate, approximate greedi�cation should be su�cient for most of the time. From
this perspective, that greedy actions may not exist is just annoyance.

Finally, when either the state or action space is uncountably in�nite, one has to be careful
even with the de�nition of policies. Using a technical term from probability theory, a
choice that makes thing work is to restrict policies to be probability kernels. Using this
de�nition means that we need to put measurability structures over both the state and
action spaces (this is only crucial when either respective set has a larger than countable
cardinality). The main change here is that with policies de�ned this way, for any 
measurable subset of ,  must be measurable. This allows us then the use
of the Ionescu-Tulcea theorem and at least the de�nitions can be made to work. The next
di�culty in this case is that “greedi�cation” may lead to outside of the set of these
“measurable policies”, which could prevent the existence of optimal policies (again, if we

∫ f(τ(ω))P(dω) = ∫ f(τ(ω))P′(dω) E E′

P P
′

E[f(τ)] = E
′[f(τ)]

(Ω, F , P)

Other types of MDPs

In�nite spaces anyone?

vπ v∗

ra(s) = 1 − 1/a a > 0

U

A ht ↦ πt(U |ht)
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are contend with approximate optimality, this di�culty disappears). There is a large
literature concerned with these issues.

Since trajectories are allowed to be in�nitely long, we have a nonconstructive result only
for the existence of the probability measures induced by the interconnection of policies
and MDPs. Oftentimes we need to check whether two probability measures over these
in�nitely long trajectories coincide. How can this be done? A general result from measure
theory says that two measures agree, if they agree of a generator of the underlying -
algebra. A convenient generator system for the -algebra over the trajectories (for the
canonical probability space) is the system whose elements take the form

and

for some . That is, if  and  agree on the probabilities assigned to
these sets, they agree everywehere. This makes things a full circle: what this result says is
that we only need to check the probabilities assigned to �nite pre�xes of the in�nitely
long trajectories. Phew. Since the probabilities assigned to these �nite pre�xes are a
function of ,  and  alone, it follows that there is a unique probability measure over
the trajectory space  that satis�es the requirements postulated in the existence
theorem. That is, the canonical probability space is uniquely de�ned.

We learned that the value function can be represented as
. Thus, maximizing the value function for a given

initial distribution  is equivalent to maximizing the dot product between  and . Next,

we present a concrete example and point out some interesting results.

To keep this example as simple as possible, we introduce some new notation. Let 
represent the set of actions admissable to the state . We now de�ne the MDP. Let

,  and . Also, let

From in�nite trajectories to their �nite pre�xes

σ

σ

{s0} × {a0} × ⋯ × {st} × A × (S × A)N

{s0} × {a0} × ⋯ × {st} × {at} × (S × A)N

s0, a0, … , st, at, … P P′

μ P π

(S × A)N

Optimization with (Discounted) Occupancy Measures

vπ(μ) = ∑s,a ra(s)νπ
μ(s, a) = ⟨νπ

μ , r⟩

μ νπ
μ r

A(s)
s ∈ S

S = {s1, s2} A(s1) = {a1, a2} A(s2) = {a3}

Pa1(s1, s1) = 1, ra1(s1) = 1
Pa2(s1, s2) = 1, ra2(s1) = 1/2

Pa3(s2, s2) = 1, ra3(s2) = 1/2.
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Our policy  can be parametrized by one parameter  as

Finally, we assume .

We explicitly write out  for all state-action pairs.

Recall, our goal is to maximize . To do this we plug in the above

quantities for  and 

Noting that the function on the right hand side is monotone increasing for , so
we get that the above quantity is maximized for .

Thus, the optimal policy is

π p

π(a1|s1) = p

π(a2|s1) = 1 − p

π(a3|s2) = 1.

μ(s1) = 1

νπ
μ(s, a) = ∑∞

t=0 γ
t
P
π
μ(St = s,At = a)

νπ
μ(s1, a1) =

∞

∑
t=0

γ tpt+1

= p
∞

∑
t=0

(γp)t

=
p

1 − γp

νπ
μ(s1, a2) =

∞

∑
t=0

γ tpt(1 − p)

= (1 − p)
∞

∑
t=0

(γp)t

=
1 − p

1 − γp

νπ
μ(s2, a3) =

1

1 − γ
−

p

1 − γp
−

1 − p

1 − γp

∑s,a ra(s)νπ
μ(s, a)

ra(s) νπ
μ(s, a)

∑
s,a

ra(s)νπ
μ(s, a) =

1 − p

1 − γp
+

1

2
(

p

1 − γp
) +

1

2
(

1

1 − γ
−

p

1 − γp
−

1 − p

1 − γp
)

=
1

2
(

p

1 − γp
) +

1

2
(

1

1 − γ
).

p ∈ [0, 1]
p = 1

( | )
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Which, aligns with our intuition that action  should always be selected in state  since
it produces larger reward. Notice how the set of occupancy measures

is a convex set. This examples shows that optimizing in the space of occupancy measures
could be a linear optimization while optimizing with a policy parametrization could be a
non-linear optimization.

I think I have seen Bertsekas and Shreve call the theorem I call fundamental also by the
same name. However, this is not quite a standard name. Nevertheless, the result is
important and many other things follow from it. In a way, this is the result that is at the
heart of all the theory. I think it deserves this name. I have probably read the proof
presented here somewhere, but this was a while ago and the source escapes me. In the RL
literature people often start with memoryless policies and work with  rather than with

. The question whether  is well-studied and understood, mostly in the control
and operations research literature.

An alternative way of seeing the fundamental theorem is as a result concerning the
geometry of the space of value functions. Indeed, �x an MDP  and let

, while let
. The set  is the set of

all value functions of . Both sets are subsets of . Using terminology from
multicriteria optimization, the optimal value function, , is the ideal point of :

 for all . Then, the fundamental theorem states that the
ideal point of  belongs to :  and in fact . However, more is known
about :

Theorem (existence theorem): Fix a �nite MDP . Then  is convex.
Furthermore, any extreme point of  belongs to .

π(a1|s1) = 1
π(a2|s1) = 0
π(a3|s2) = 1.

a1 s1

{(t, (1 − γt − t), 1/(1 − γ) − t − (1 − γt − t)) : t ∈ [0, 1/(1 − γ)]}

Fundamental Theorem

~v∗

v∗ ~v∗ = v∗

The geometry of the space of value functions

M

V = {vπ : π is a policy of M}
V DET = {vπ : π is a deterministic memoryless policy of M} V

M RS

v∗
V

v∗(s) = sup{v(s) : v ∈ V} s ∈ S

V V v∗ ∈ V v∗ ∈ V DET

V

M V ⊂ RS

V V DET
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This result is due to Dadashi et al. (2019).

This theorem can be found in Appendix A.1 of my short RL book (Szepesvári, 2010).
However, of course, it can be found in many places (the Wikipedia article is also OK). It is
worthwhile to spend some time with this theorem to understand its conditions, going
back to concepts like Cauchy-sequences (which should perhaps be called sequences with
vanishing oscillations) and completeness of the set of real numbers.

The references mentioned before:

Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis lectures on
arti�cial intelligence and machine learning, 4(1), 1-103.

The next work (a book chpater) gives a concise yet relatively thorough introduction. The
chapter also gives a proof of the fundamental theorem; through the su�ciency of Markov
policies. This is done for the discounted and also for a number of alternate criteria.

Garcia, Frédérick, and Emmanuel Rachelson. 2013. “Markov Decision Processes.” In
Markov Decision Processes in Arti�cial Intelligence, 1–38. Hoboken, NJ USA: John
Wiley & Sons, Inc.

A summary of basic results for countable and Borel state-space, and Borel action spaces,
with potentially unbounded (from below) reward functions can be found in the next
(excellent) paper, which also gives a concise overview of the history of these results:

Feinberg, Eugene A. 2011. Total Expected Discounted Reward MDPS: Existence of
Optimal Policies. In Wiley Encyclopedia of Operations Research and Management
Science. Hoboken, NJ, USA: John Wiley & Sons, Inc.

An argument showing the fundamental theorem for the �nite-horizon case derived from
a general result of David Blackwell can be found in a blog-post of Maxim Raginsky, who
gives further pointers, most notable this. David Blackwell has contributed in numerous
ways to the foundations of statistics, decision theory, probability theory, and many many
other subjects and the importance of his work cannot be overstated.

Banach’s �xed point theorem
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