
1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 1/12

RL Theory

Planning in MDPs / 3. Value Iteration and Our First Lower Bound

PDF Version

Last time, we discussed the Fundamental Theorem of Dynamic Programming, which then
led to the e�cient “value iteration” algorithm for �nding the optimal value function. And
then we could �nd the optimal policy by greedifying w.r.t. the optimal value function. In
this lecture we will do two things:

In the previous lecture we found that the iterative computation that starts with some
 and then obtains using the “Bellman update”

leads to a sequence whose th term approaches , the optimal value function, at
a geometric rate:

While this is reassuring, our primary goal is to obtain an optimal, or at least a near-
optimal policy. Since any policy that is greedy with respect to (w.r.t) is optimal, a
natural idea is to stop the value iteration after some �nite number of iteration steps and
return a policy that is greedy w.r.t. the approximation of that was just obtained. If we
stop the process after the th step, this de�nes a policy such that is greedy w.r.t. :

. The hope is that as approaches , the policies will also get better
in the sense that decreases.

The next theorem guarantees that this will indeed be the case.

3. Value Iteration and Our First Lower
Bound

Elaborate more on the the properties of value iteration as a way of obtaining near-
optimal policies;

1

Discuss the computational complexity of planning in �nite MDPs.2

Finding a Near-Optimal Policy using Value Iteration

https://rltheory.github.io/
https://rltheory.github.io/w2021-lecture-notes/planning-in-mdps
https://rltheory.github.io/documents/lectures/winter_2022/website_notes/planning_in_mdps/lec3.pdf

1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 2/12

Theorem (Policy Error Bound): Let be arbitrary and be the greedy policy
w.r.t. : . Then,

In words, the theorem states that the policy error () of a policy that is greedy
with respect to a function is controlled by the distance of to . This can also be seen as
stating that the “greedy operator” , which maps functions to a policy that is
greedy w.r.t. , is continuous at when the “distance” between policies

 is de�ned as the maximum norm distance between their value functions:

. Indeed, with the help of this notation, an alternative form of the
theorem statement is that for any ,

In words, this can be described as that is is “ -smooth” at
when the input space is equipped with the maximum norm distance and the output space
is equipped with . One can also show that this result is sharp in that the constant

 cannot be improved.

The proof is an archetypical example of proofs of using contraction and monotonicity
arguments to prove error bounds. We will see variations of this proof many times. Before
the proof, let us introduce the notation for a vector to mean the componentwise
absolute value of the vector: , .

As a way of using this notation, note that for any memoryless policy ,

and hence

In Eq. the �rst inequality follows because is monotone and . For
the proof it will also be useful to recall that we also have

1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 3/12

for any , and memoryless policy . These two identities follow just by the
de�nitions of and , as the reader can easily verify them.

Proof: Let be as in the theorem statement and let . Let
. The result follows by algebra once we prove that .

Hence, we only need to prove this inequality.

By our assumptions on and , . Now,

Taking the (pointwise) absolute value of both sides and using the triangle inequality, and
then Eq. we �nd that The proof is �nished by taking the
maximum over the components, noting that .

An alternative way of �nishing the proof is to note that from , by
reordering and using that is a monotone operator,

. Taking the max-norm of both sides, we get

.

From Eq. we see for , started with , value iteration

yields such that and consequently, for a policy that is greedy w.r.t.

, . Now, for a �xed setting so that holds, we see that

after iterations, we get a -optimal policy : . Computing

 using takes elementary arithmetic (and logic) operations. Putting
things together we get the following result:

Value Iteration as an Approximate Planning Algorithm

1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 4/12

Theorem (Runtime of Approximate Planning with Value Iteration): Fix a �nite
discounted MDP and a target accuracy . Then, after

elementary arithmetic operations, value iteration produces a policy that is -optimal:

, where the result holds when is �xed and hides a
 term.

Note that the number of operations needed depends very mildly on the target accuracy.
However, accuracy here means an additive error. While the optimal value could be as high
as , it can easily happen that the best value that can be achieved, , is
signi�cantly smaller than . It may be for example that , in which
case a guarantee with is vacuous.

By a careful inspection of we can improve the previous result so that this problem is
avoided:

Theorem (Runtime when Controlling for the Relative Error): Fix a �nite discounted
MDP and a target accuracy . Then, stopping value iteration after

iterations, the policy produced satis�es the relative error bound

while the total number of elementary arithmetic operations is

where hides .

Notice that the runtime required to achieve a �xed relative accuracy appears to be the
same as the runtime required to achieve the same level of absolute accuracy. In fact, the

1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 5/12

runtime slightly decreases. This should make sense: The worst-case for the �xed absolute
accuracy is when , and in this case the relative accuracy is
signi�cantly less demanding: With , value iteration can stop after guaranteeing
values of , which, as a value, is much smaller than , the target
with the absolute accuracy level of .

Note that the relative error bound is not without problems either: It is possible that for
some states , is negative, a vacuous guarantee. A reasonable stopping
criteria would be to stop when the policy that we read out satis�es

Since is not available, to arrive at a stopping condition that can be veri�ed and which
implies the above inequality, one can replace above with an upper bound on it, such as

. In this imagined procedure, in each iteration, one also needs
to compute the value function of policy to verify whether the stopping condition is
met. If we do this much computation, we may as well replace with in the update
equation hoping that this will further speed up convergence. This results in what is
known as policy iteration, which is the subject of the next lecture.

Now that we have our �rst results for the computation of approximately optimal policies,
it is time to ask whether the algorithm we discovered is doing unnecessary work. That is,
what is the minimax computational cost of calculating an optimal, or approximately
optimal policy?

To precisely formulate this problem, we need to specify the inputs and the outputs of the
algorithms considered. The simplest setting is when the inputs to the algorithms are
arrays, describing the transition probabilities and the rewards for each state action pair
with some ordering of state-action pairs (and next states in the case of transition
probabilities). The output, by the Fundamental Theorem, can be a memoryless policy,
either deterministic or stochastic. To describe such a policy, the algorithm could write a
table. Clearly, the runtime of the algorithm will be at least the size of the table that needs
to be written, so the shorter the output, the better the runtime can be. To be nice with the
algorithms, we should allow them to output deterministic policies. After all, the
Fundamental Theorem also guarantees that we can always �nd a deterministic
memoryless policy which is optimal. Further, greedy policies can also be chosen to be
deterministic, so the value-iteration algorithm would also satisfy this requirement. The

The Computational Complexity of Planning in MDPs

1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 6/12

shortest speci�cation for a deterministic policy is an array of the size of the state space
that has entries.

Thus, the runtime of any algorithm that needs to “produce” a fully speci�ed policy is at
least .

This is quite bad! As was noted before, , the number of states, in typical problems is
expected to be gigantic. But by this easy argument we see that if we demand algorithms to
produce fully speci�ed policies then without any further help, they have to do as much
work as the number of states. However, things are a bit even worse.

In Homework 0, we have seen that no algorithm can �nd a given value in an array without
looking at all entries of the array (curiously, we saw that if we allow randomized
computation, that on expectation it is enough to check half of the entries).

Based on this, it is not hard to show the following result:

Theorem (Computation Complexity of Planning in MDPs):

Let . Any algorithm that is guaranteed to produce -optimal policies in
any �nite MDP described with tables, with a �xed discount factor and rewards
in the interval needs at least elementary arithmetic operations on some
MDP with the above properties and whose state space is of size and action space is of
size .

Proof sketch: We construct a family of MDPs such that no matter the algorithm, the
algorithm will need to perform the said number of operations in at least one of the MDPs.

One-third of the states is reserved for “heaven”, one-third is reserved for “hell” states.
The remaining one-third set of states, call them , is where the algorithms will need to
make some nontrivial amount of work. The MDPs are going to be deterministic. In the
tables given to the algorithms as input, we (conveniently for the algorithms) order the
states so that the “hell” states come �rst, followed by the “heaven” states, followed by
the states in .

In the “heaven” class, all states self-loop under all actions and give a reward of one. The
optimal value of any of these states is . In the “hell” class, states also self-loops

https://rltheory.github.io/documents/assignments/assignment0.pdf

1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 7/12

under all actions but give a reward of zero. The optimal value of these states is . For the
remaining states, all actions except one lead to some hell state, while the chosen special
action leads to some state in the heaven class.

The optimal value of all states in set have a value of and the value of a policy
that in a state in does not choose the special optimal action gets the value of in that
state. It follows that any algorithm that is guaranteed to be optimal needs to identify the
unique optimal action at every state in .

In particular, for every state and action , the algorithm needs to read
entries of the transition probability vector or it can’t �nd out whether leads to a
state in the heaven class or the hell class: The probability vector will have a single
one at such an entry, either among the entries representing the hell, or the
entries representing the heaven states. By the aforementioned homework problem, any
algorithm that needs to �nd this “needle” requires to check entries. Since the
number of states in is also , we get that the algorithm needs to do

 work.

We immediately see two di�erences between the lower bound and our previous upper
bound(s): In the lower bound there is no dependence on (the e�ective horizon
at a constant precision). Furthermore, there is no dependence on , the inverse
accuracy.

As it turns out, the dependence on of value-iteration is super�uous and can be
removed. The algorithm that achieves this is policy iteration, which was mentioned
earlier. However, this result is saved for the next lecture. After this, the only remaining
gap will be the order of the polynomials and the dependence on , which is
closely related to the said polynomial order.

And of course, we save for later the most pressing issue that we need to somehow be able
to avoid the situation when the runtime depends on the size of the state space (forgetting
about the action space for a moment). By the lower bound just presented we already know
that this will require changing the problem setting. Just how to do this will be the core
question that we will keep returning to in the class.

The idea of value iteration is probably due to Richard Bellman.

Notes

Value iteration

1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 8/12

This theorem is due to Singh & Yee, 1994.

The example that shows that the result stated in the theorem is tight. Consider an MDP
with two states, call them and , two actions, and deterministic dynamics. Call the two
actions and . Regardless the state where it is used, action makes the next state transit
to state , while giving a reward of . Analogously, action makes the next state transit
to state , while giving a reward of . The optimal values in both states are .
Let be so that , while . Thus, underestimates the
value of , while it overestimates the value of state . It is not hard to see that the policy

 that uses action regardless the state is greedy with respect to (actually, the action-
values of the two actions tie at both states). The value function of this policy assigns the
value of to both states, showing that the result stated in the theorem is indeed tight.

The last theorem is due to Chen and Wang (2017), but the construction is also
(unsurprisingly) similar to one that appeared in an earlier paper that studied query
complexity in the setting when the access to the MDP is provided by a simulation model.
In fact, we will present this lower bound later in a lecture where we study batch RL.
According to this result, the query-complexity (also known as sample-complexity) of
�nding a -optimal policy with constant probability in discounted MDPs accessible
through a random access simulator, apart from logarithmic factors, is , where

.

We already saw that in order to just clearly de�ne the computational problems (which is
necessary for being able to talk about lower bounds), we need to be clear about the inputs
(and the outputs). The table representation of MDPs is far from being the only possibility.
We just mentioned the “simulation model”. Here the algorithm “learns” about the MDP
by issuing next state and reward queries to the simulator at some state-action pair
of its choice to which the simulator responds with a random next state (drawn fresh) and
the . Interestingly, this can provably reduce the number of queries compared to the
table representation.

Another alternative, which still keeps tables, is to give the algorithm a cumulative
probability representation. In this representation, the states are identi�ed with
as before but instead of giving the algorithm the tables for �xed

, the algorithm is given

Error bound for greedi�cation

Computational complexity lower bound

Representations matter

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec18/

1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 9/12

(the last entry could be saved, because it is always equal to one, but in the grand scheme
of things, of course, this does not matter). Now, it is not hard to see that if the original
probability vector had a single one and zeroes everywhere else, the “needle in the
haystack problem” used in the lower bound, with the integral representation above, a
clever algorithm can �nd the entry with the one with at most queries. As it
turns out, with this representation, the query complexity (number of queries required) of
producing a good policy can indeed be reduced from the quadratic dependence on the size
of the state-space to a log-linear dependence. Hence, we see that the input representation
crucially matters. Chen and Wang (2017) also make this point and they discuss yet
another, “tree” representation, which leads to a similar speedup.

The simulator model assumption addresses the problem that just reading the input may
be the bottleneck. This is not the only possibility. One can imagine various classes of
MDPs that have a short description, which may raise the hope that one can �nd out a good
policy in them without touching each state-action pair. There are many examples of
classes of MDPs that belong to this category. These include

factored MDPs: The transition dynamics have a short, structured (factored)
representation, and the same applies to the reward

parametric MDPs: The transition dynamics and the rewards have a short, parametric
representation. Examples include linear-quadratic regulation (linear dynamics,
quadratic reward, Euclidean state and action spaces, Gaussian noise in the transition
dynamics), robotic systems, various operations research problems.

For factored MDPs one is out of luck: In these, planning is provably “very hard”
(computationally). For linear-quadratic regulation, on the other hand, planning is
“easy”; once the data is read, all one has to do is to solve some algebraic equations, for
which e�cient solution methods have been worked out.

The key idea of the lower bound crucially hinges upon that good algorithms need to
“learn” about their inputs: The number of arithmetic and logic operations of any
algorithm is at least as large as the number of “read” operations it issues. The minimum
number of required read operations to produce an input of some desired property is often
called the problems query complexity and by the above reasoning we see that the
computational complexity is lower bounded by the query complexity. As it happens, query

MDPs with short descriptions

•

•

Query vs. computational complexity

1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 10/12

complexity is much easier to bound than computational complexity in the sense that it is
rare to see computational complexity lower bounds strictly larger than the query
complexity (the exceptions to this come when a “compact” representation of the MDP is
available, such as in the case of factored MDPs). At the heart of query complexity lower
bounds is often the needle in the haystack problem. This seems to be generally true when
the inputs are “deterministic”. When querying results in stochastic (random) outcomes,
multiple queries may be necessary to “reject”, “reduce”, or “�lter out” the noise and
then new considerations appear.

In any case, query complexity is a question about quickly determining the information
crucial to arrive at a good decision early and is in a way about “learning”: Before a table is
read, the algorithm does not know which MDP it faces. Hence, query complexity is
essentially an “information” question and is also sometimes called information
complexity and we can think of query complexity as the most basic information theory
question. This is a bit di�erent though than mainstream information theory, which is
somehow tied up in dealing with reducing the e�ect of random responses (random
“corruptions” of the clean information).

Query complexity is widely studied in a number of communities which, sadly, are almost
entirely disjoint. Information-theory, mentioned above is one of them, though as was
noted, here the problems are often tied to studying the speed of gaining information in
the presence of noise. Besides information theory, there is the whole �eld of information-
based complexity, which has its own journal, multiple books and more. Also notable is the
theory community that studies the complexity of evolutionary algorithms. Besides these,
of course, query complexity made appearances in the optimization literature (with or
without noise), operations research, and of course in the machine learning and statistics
community. In particular, in the machine learning and statistics community, when the
algorithm is just handed over noisy data, “the sample”, one can ask how large this sample
needs to be to achieve some good outcome (e.g., good predictions on unseen data). This
leads to the notion of sample complexity, which is the same as our query complexity
except that the queries are of the “dull”, “passive” nature of “give me the next
datapoint”. As opposed to this, “active learning” refers to the case when the algorithms
themselves control some aspects of how the data is collected.

Everyone after going to a few machine learning conferences or reading their �rst book, or
blog posts would have heard about David Wolpert’s “no-free lunch theorems”. Yet, I �nd

Query complexity everywhere

Free lunches, needles and a bit of philosophy

1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 11/12

that to most people the exact nature (or signi�cance) of these theorems remain elusive.
Everyone heard that these theorem essentially state that “in the lack of bias, all
algorithms are equal” (and therefore there is no free lunch), from which we should
conclude that the only way to choose between algorithms is by introducing bias.

But what does bias means? If one reads these results carefully (and the theory community
of evolutionary computation made a good job of making them accessible) one �nds that
the results are nothing more that describing some corollaries that to �nd a needle in a
haystack (the special entry in a long array), one needs to search the whole haystack (query
almost all entries of the array).

Believers of the power of data like to dismiss the signi�cance of the no-free lunch result
by claiming that it is ridiculous in that it assumes no structure at all. I �nd these
arguments weak. The main problem is that they are evasive. The evasiveness comes from
the reluctance to be clear about what we expect the algorithms to achieve. The claim is
that once we are clear about this, that is, clear about the goals, or just the problem
speci�cation, we can always hunt for the “needle in the haystack” subproblems within
the problem class. This is about �guring out the symmetries (as symmetry equals no
structure) that sneakily appear in pretty much any reasonable problem we think of worth
studying. The only problems that do not have “needle in the haystack” situations
embedded into them are the ones that are not speci�ed at all.

What is the upshot of all this? In a way, the real problem is to be clear about what the
problem we want to solve is. This is the problem that most theoreticians in my �eld
struggle with every day. Just because this is hard, we cannot give up on this before even
starting, or this will just lead to chaos.

As we shall see in this class, how to specify the problem is also at the very heart of
reinforcement learning theory research. We constantly experiment with various problem
de�nitions, tweaking them in various ways, trying to separate hopelessly hard problems
from the easy, but reasonably general ones. Theoreticians like to build a library of various
problem settings that they can classify in various ways, including relating the problem
settings to each other. While algorithm design is the constructive side of RL (and
computer science, more generally), understanding the relationship between the various
problem settings is just as equally important.

References

1/8/23, 9:45 PM Value Iteration and Our First Lower Bound | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/ 12/12

Chen, Y., & Wang, M. (2017). Lower bound on the computational complexity of
discounted markov decision problems. arXiv preprint arXiv:1705.07312. [link]

Singh, S. P., & Yee, R. C. (1994). An upper bound on the loss from approximate optimal-
value functions. Machine Learning, 16(3), 227-233. [link]

Share Best Newest Oldest

0 Comments 1 Login

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Be the first to comment.

Subscribe Privacy Do Not Sell My Data

G

Copyright © 2020 RL Theory.

•

•

https://arxiv.org/pdf/1705.07312.pdf
https://link.springer.com/article/10.1007/BF00993308
https://disqus.com/
https://disqus.com/home/inbox/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/data-sharing-settings/

