
1/8/23, 9:45 PM Online Planning - Part I. | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec5/ 1/9

RL Theory

Planning in MDPs / 5. Online Planning - Part I.

PDF Version

In this lecture we

In a previous lecture we have seen that in discounted MDP with states and actions, no
algorithm can output a optimal or better policy with a computation cost
less than provided that the MDP is given with a table representation. One of the

 factors here comes from that to specify a policy one needs to compute (and output)
what action to take in every state. The additional factor comes from because to �gure
out whether an action is any good, one needs to read almost all entries of the next-state
distribution vector.

An unpleasant tendency of the world is that if a problem is modelled as an MDP (that is,
the Markov assumption is faithfully observed), the size of the state space tends to blow
up. Bellman’s curse of dimensionality is one reason why this happens. To be able to deal
with such large MDPs, we expect our algorithm’s runtime to be independent of the size
of the state space. However, our lower bound tells us that this is a pipe dream.

But why did we require the planner to output a full policy? And why did we assume that
the only way to get information about the MDP is to read big tables of transition
probabilities? In fact, if the planner is used inside an “agent” that is embedded in an
environment, there is no need for the planner to output a full policy: In every moment,
the planner just needs to calculate the action to be taken in the state corresponding to the

5. Online Planning - Part I.

introduce online planning;1

show that for deterministic MDPs there is an online planner whose runtime per call is
independent of the size of the state space;

2

show that this online planner has in fact a near-optimal runtime in a worst-case
sense.

3

What is Online Planning?
S A

δ ≤ γ/(1 − γ)
Ω(S 2A)

SA

S

https://rltheory.github.io/
https://rltheory.github.io/w2021-lecture-notes/planning-in-mdps
https://rltheory.github.io/documents/lectures/winter_2022/website_notes/planning_in_mdps/lec5.pdf
https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3/
https://rltheory.github.io/lecture-notes/planning-in-mdps/lec1#curseofdim

1/8/23, 9:45 PM Online Planning - Part I. | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec5/ 2/9

current circumstances of the environment. In particular, there is no need to specify what
action to take under any other circumstances than the current one!

As we usually do in these lectures, assume that the environment is an MDP and the agent
gets access to the state in every step when it needs to make a decision. Further, assume
that the agent is lucky to also have access to a simulator of the MDP that describes its
environment. Just think of the simulator as a black box that can be, fed with a state-action
pair and responds with the immediate reward and a random next state from the correct
next-state distribution. One can then perhaps build a planner that uses this black box
with a “few” queries and quickly returns an action, to be taken by the agent, moving the
environment to a random next state, from where the process continues.

Now, the planner does not need to output actions at all states and it does not need to
spend time on reading long probability vectors. Hence, in theory, the obstacles that led to
the lower bound are removed. The question still remains whether in this new situation
planner’s can indeed get away with runtime independent of the size of the state space. To
break the suspense, the answer is yes and it comes very easily for deterministic
environments. For stochastic environments a little more work will be necessary.

In the remainder of this lecture we give a formal problem de�nition for the online
planning problem that was described informally above. Next, the result is explained for
deterministic environments. This result will be matched with a lower bound.

We start with the de�nition of MDP simulators. We use a language similar to that used to
describe optimization problems where one talks about optimization in the presence of
various oracles (zeroth-order, �rst order, noisy, etc.). Because we assume that all MDPs
are �nite, we identify the state and action spaces with subsets of the natural numbers and
for the action set we also require that the action set is where is the number of
actions. This simpli�es the description quite a bit.

De�nition (MDP simulator): A simulator implementing an MDP is a
“black-box oracle” that when queried with a state action pair returns the
reward and a random state , where and .

Online Planning: Formal De�nitions

[A] A

M = (S,A, P , r)
(s, a) ∈ S × A

ra(s) S ′ ∼ Pa(s) r = (ra(s))s,a P = (Pa(s))s,a

1/8/23, 9:45 PM Online Planning - Part I. | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec5/ 3/9

Users of the black-box must pay attention avoid querying it for state-action pairs outside
of . Our next notion is that of an online planner:

De�nition (Online Planner): An online planner takes as input the number of actions , a
state , an MDP simulator “access point”. After querying this simulator �nitely
many times, the planner needs to return an action from .

(Online) planners may randomize their calculation. Even if they do not randomize, the
action returned by a planner is in general random due to the randomness of the simulator
that the planner uses. A planner is well-formed if no matter what MDP it interfaces with
through a simulator, it returns an action after querying the simulator �nitely many times.
This also means that the planner can never feed the simulator with state-action pair
outside of the set of such pairs.

If an online planner is given access to a simulator of , the planner and the MDP
together induce a policy of the MDP. We will just refer to this policy as the planner-
induced policy when the MDP is clear from the context. Yet, this policy depends on the
MDP implemented by the simulator. If an online planner is well-formed, this policy is
well-de�ned no matter the MDP that is implemented by the simulator.

Online planners are expected to produce good policies:

De�nition (-sound Online Planner): We say that an online planner is -sound if it is
well-formed and for any MDP , the policy induced by it and a simulator
implementing is -optimal in . In particular,

must hold where is the optimal value function in .

The (per-state, worst-case) query-cost of an online planner is the maximum number of
queries it submits to the simulator where the maximum is over both the MDPs and the
initial states.

S × A

A

s ∈ N

[A]

M M

π

δ δ

M π

M δ M

vπ ≥ v∗ − δ1

v∗ M

1/8/23, 9:45 PM Online Planning - Part I. | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec5/ 4/9

The following vignette summarizes the problem of online planning:

Model: Any �nite MDP

Oracle: Black-box simulator of

Local input: State

Local output: Action

Outcome: Policy

Postcondition:

As an optimization, we let online planners also take as input , the target suboptimality
level.

Recall value iteration:

As we have seen, if the iteration is stopped so that , the policy
de�ned via

is guaranteed to be -optimal. Can this be used for online planning? As we shall see, in a
way, yes. But before showing this, it will be worthwhile to introduce some additional
notation that, in the short term, will save us some writing. More importantly, the new
notation will also be seen to in�uence algorithm design.

The observation is that to decide about what action to take, we need to calculate the one-
step lookahead value of the various actions. Rather than doing this in a separate step as
shown above, we could have as well chosen to keep track of these lookahead values

throughout the whole procedure. Indeed, de�ne as

M

M

s

A

π

vπ
M ≥ v∗

M − δ1

δ

Online Planning through Value Iteration and Action-value
Functions

Let 1 v0 = 0

For let 2 k = 1, 2, … vk+1 = Tvk

k ≥ Hγ,δ(1−γ)/(2γ) πk

πk(s) = arg max
a

ra(s) + γ⟨Pa(s), vk⟩

δ

~
T : RS×A → RS×A

~
Tq = r + γPMq, (q ∈ R

S×A) ,

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec3#viasplanning

1/8/23, 9:45 PM Online Planning - Part I. | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec5/ 5/9

where and the operators and are de�ned
via

with , , , .

Then the de�nition of can be shortened to

It is instructive to write the above computation in a recursive, algorithmic form. Let

Using a Python-like pseudocode, our function to calculate the values looks as
follows:

Line 3, which is where the recursive call happens uses Python’s list comprehensions: the
brackets create lists and the function itself returns a list. This is a recursive function
(since it calls itself in line 3. The runtime is easily seen to be , which is not very
hopeful until we notice that if the MDP was deterministic, that is, has a single
one entry, and we have a way of looking up which entry is this without going through all
the states, say, is a function that gives the next states, we can rewrite the
above as

As in line 3 there is no loop over the next states (no summing up over these), the runtime
becomes

r ∈ R
S×A P : R

S → R
S×A M : R

S×A → R
S

r(s, a) = ra(s) , (Pv)(s, a) = ⟨Pa(s), v⟩ , (Mq)(s) = max
a∈A

q(s, a)

s ∈ S a ∈ A v ∈ RS q ∈ RS×A

πk

πk(s) = arg max
a

(
~
T k+1

0)(s, a) .

qk =
~
T k

0.

qk(s, ⋅)

1. define q(k,s):

2. if k = 0 return [0 for a in A] # base case

3. return [r(s,a) + gamma * sum([P(s,a,s') * max(q(k-1,s')) for s' in S]) for a in A]

4. end

(AS)k

P(s, a, ⋅)

g : S × A → S

1. define q(k,s):

2. if k = 0 return [0 for a in A] # base case

3. return [r(s,a) + gamma * max(q(k-1,g(s,a))) for a in A]

4. end

1/8/23, 9:45 PM Online Planning - Part I. | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec5/ 6/9

which is the �rst time we see that a good action can be calculated with e�ort regardless of
the size of the state space! And of course, if one is given a simulator of the underlying
MDP, which is deterministic, calling is the same as calling the simulator (once). But will
this idea extend to the stochastic case? The answer is yes, but the details will be given in
the next lecture. Instead, in this lecture we take a brief look at whether there is any
possibility to do better than the above recursive procedure.

Theorem (online planning lower bound): Take any online planner that is -sound with
 for discounted MDPs with rewards in . Then there exist some MDPs on which

uses at least queries at some state with

where is the number of actions in the MDP.

Denote by the value de�ned in . Then, for , .

Proof: This is a typical needle-in-the-haystack argument. We saw in Question 5 on
Homework 0 that no algorithm can �nd out which element of a binary array of length
is one with less than queries. Take a rooted regular -ary tree of depth . The tree
has exactly leafs. Consider an MDP with states corresponding to the nodes of this tree.
Call the root . Let the dynamics be deterministic: Taking an action at a node (of the tree)
makes the next state the child of that node, unless the node is a leaf node, which are
absorbing states: The next state under any action at any leaf state is itself. Let all the
rewards be zero except at exactly one of the leaf nodes, where the reward under any action
is set to one.

If a planner is -sound, we claim that it must �nd the optimal action at . This holds
because the value of this action is and, by our choice of ,

, while the value of any other action at is zero. It follows that the

O(Ak)

g

Lower Bound

p δ

δ < 1 [0, 1] p

Ω(Ak)

k = ⌈
ln(1/(δ(1 − γ)))

ln(1/γ)
⌉, (1)

A

kγ (1) γ → 1 kγ = Ω(Hγ,δ)

m

Ω(m) A k

Ak

s0

s s

δ s0

∑∞
i=k γ i = γ k/(1 − γ) k

γ k/(1 − γ) ≥ δ s0

https://rltheory.github.io/documents/assignments/assignment0.pdf

1/8/23, 9:45 PM Online Planning - Part I. | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec5/ 7/9

planner needs to be able to identify the unique action at the unique leaf node whose
reward is one, which, by Question 5 on Homework 0, needs at least queries.

For a fully formal speci�cation the reader may worry about how a state is described to an
online planner, especially, if we allowed uncountably many states. Because the online
planner will only have access to the state that it receives as its input and the other states
that are returned from the simulator, for the purpose of communication between the
online planner and its environment and the simulator, all these states can just be
assigned unique numbers to identify them.

There is an obvious gap between the lower and the upper bound that should be closed.

Last year’s lecture notes used the expression local planning in place of online planning.
There are pros and cons for both expressions, but perhaps online planning better
expresses that the planner will be used in an online fashion, that is, every time after a
transition happens.

Simulators come in many shapes and forms. A general planner needs to be prepared to be
used in an interconnection with any simulator. But this is too much: Every simulator
provides an interface to the planners and planners need to be designed around these
interfaces. Therefore, planners will be specialized to the speci�c interface used. Here, we
distinguish three types of interfaces based on what access the interface allows to
generating data. The access can be global, local or online.

Global access means that the simulator provides a function that returns a description of
the full state space. For �nite MDPs this would just mean returning the number of states

. Then, the simulator can be called for any pair where and (the
simulator should also have a function that returns the number of actions,). Internally,
the simulator then needs to translate the integer indices and into appropriate data for
which the simulation can be done. Then, the simulator would generate the next state, and
translate it back to an integer in , which is the data returned from the call. The

Ω(Ak) ■

Notes

Dealing with larger state spaces

Gap between the lower and upper bound

Local planning vs. online planning

On simulators and access modes

S (s, a) s ∈ [S] a ∈ [A]
A

s a

[S]

https://rltheory.github.io/documents/assignments/assignment0.pdf

1/8/23, 9:45 PM Online Planning - Part I. | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec5/ 8/9

simulator should also return the associated reward. Often, the reward would also be
random (in the lecture, we are concerned with deterministic rewards, but this is just done
for the sake of simplicity: random rewards at this stage would not create further
di�culties).

Local access means that the simulator allows the planner to generate transitions starting
only from states that were passed to the planner previously. To implement a local access
simulator, one can just introduce an array that is used to remember all the states that
have been returned to the planner. For the sake of interfacing with the planner, one can
then use the indexing into this array. This way, the planner does not need to know the
details of how states are internally represented and it also becomes possible to interface
with simulators where the number of states is in�nite, or when it is �nite, but calculating
this number would be impractical or intractable. Of course, the simulator needs the ability
to “go back” to a previously visited state and generate new transition data from there.
This can be usually implemented on the top of existing simulators without much trouble
(the ability to do this is known as “checkpointing”).

Online access simulators have an “internal state”, which the planners can manipulate in
two ways: they can reset this internal state to the initial state (which is provided to the
planner when the planner is called), or they can ask for a transition from the current
internal state, by providing an action. As a result of this, the simulator’s internal state
would move to a random next state, which is what would be returned to the planner
(along with the associated reward).

Clearly, any planner prepared to work with online access, can also be used with simulator
that provide either local access or global access, and any planner prepared to work with
local access can be used with simulators providing global access. In this way, online
access is the most general of the access modes, local access is least general, and global
access is the most restrictive.

Note that even with online access there is the issue that state information about the state
of the environment has to be communicated to the planner in a way that is consistent
with how state information can be passed from the planner to the simulator. To keep
planners general, the environment and the simulator need to work on an appropriate
consistent way of serializing information about the state, which is a pure engineering
issue and can usually be done without much trouble.

“Planning with a generative models” is an alternative, early terminology that is still
used in the literature today. Most commonly, this is means online planning with a global

1/8/23, 9:45 PM Online Planning - Part I. | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec5/ 9/9

access simulator. However, as the expression itself is not as easy to adopt to di�erent
situations as described here, we will refrain from using it.

Copyright © 2020 RL Theory.

