
1/8/23, 9:45 PM Function Approximation | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec7/ 1/8

RL Theory

Planning in MDPs / 7. Function Approximation

PDF Version

Our lower bound for online planners show that there are no online planners that lead to
good policies in all MDPs while satisfying the following three requirements

Thus, one is left with no choice than to give up on one of the requirements. Since
e�ciency is clearly nonnegotiable (otherwise the runner just would not be practical), the
only requirement that can be replaced is the �rst one. In what follows we will look at ways
of relaxing this requirement.

In all the relaxations we will look at, we will essentially restrict the set of MDPs that the
planner is expected to work on. However, we will do this in such a way that no MDP will be
ever ruled out. We achieve this by giving the planner some extra hint about the MDP and
we demand good performance only when the hint is correct. Since the hint will take a
general form, some hint is always correct for any MDP. Hence, no MDP is left behind and
the planner can again demanded to be e�cient and e�ective.

The hints that we start with will concern the value functions. In particular, they state that
either the optimal value, or the value function of all policies are e�ectively compressible.

For motivation, consider the �gure on the right. Imagine
the state space is an interval of the real line and the optimal
value function in an MDP looks like as shown on the �gure:
It is a nice, smooth function over the interval. As is well
known, such relatively slowly changing functions can be

7. Function Approximation

the planner induces policies that achieve some positive fraction of the optimal value in
all MDPs;

1

the per-state runtime shows polynomial dependence on the planning horizon and2 H

it shows a polynomial dependence on the number of actions and3

it shows no dependence on the number of states in the MDP.4

Hints on value functions

https://rltheory.github.io/
https://rltheory.github.io/w2021-lecture-notes/planning-in-mdps
https://rltheory.github.io/documents/lectures/winter_2022/website_notes/planning_in_mdps/lec7.pdf

1/8/23, 9:45 PM Function Approximation | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec7/ 2/8

well approximated by using the linear combination of a few �xed basis functions, like an
appropriate polynomial, or Fourier basis, or using splines. Then, one hopes that even
though the state space is large or even in�nite as in this example, there could perhaps be a
method that calculates the few coe�cients needed get a good approximation to with a
runtime that depends polynomially on the horizon, the number of actions and the
number of coe�cients that one needs to calculate. Given the knowledge of and
simulator access to the MDP, good actions can then be e�ciently obtained by performing
one-step lookahead computations.

If the basis functions mentioned are then, formally, the hope is that with
some coe�cients , we will have

In the reinforcement learning literature, the vector is called the feature
vector assigned to state . For a more compact notation we also use to be a map from
to which assigns the feature vectors to the states:

Conversely, given , its component are denoted using . It will also be
useful to introduce a matrix notation: Recall that the number of states is and without
loss of generality we may assume that . Then, we can treat each of as -
dimensional vectors: The th component of is . Then, we can stack next to
each other to form a matrix:

That is, is a matrix. The set of real-valued functions over the state space that can
be described with the linear combination of the basis functions is

Identifying the space of real-valued functions with the vector space in the natural way,
 is a -dimensional subspace of , which is the same as the “column space”, or the

span, or the range space of :

v∗

v∗

Linear function approximation
ϕ1, … ,ϕd : S → R

θ = (θ1, … , θd)⊤ ∈ R
d

v∗(s) =
d

∑
i=1

θiϕi(s) for all s ∈ S . (1)

(ϕ1(s), … ,ϕd(s))⊤

s ϕ S

R
d

ϕ(s) = (ϕ1(s), … ,ϕd(s))⊤ .

ϕ : S → R
d ϕ1, … ,ϕd

S

S = [S] ϕ1, … ,ϕd S

i ϕj ϕj(i) ϕ1, … ,ϕd

Φ = ∈ RS×d .
⎛⎜⎝ | | … |

ϕ1 ϕ2 … ϕd

| | … |

⎞⎟⎠Φ S × d

F = {f : S → R : ∃θ ∈ R
d s.t. f(s) = ⟨ϕ(s), θ⟩} .

R
S

F d R
S

Φ

F = {Φθ : θ ∈ R
d} = span(Φ)

1/8/23, 9:45 PM Function Approximation | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec7/ 3/8

If we need to indicate the dependence of on the choice of features, we will write either
 or .

Now, we have three equivalent ways of specifying the “features”, either by specifying the
basis functions , or the feature-map , or the feature matrix , and we have a
four equivalent way of specifying the functions that can be obtained via the linear
combination of features.

Note that in the above problem description it is tacitly assumed that the feature-map, in
some form or another, is available to the planner. In fact, the feature map can be made
available in multiple ways. When we argue for lower bounds, especially for query
complexity, we often assume that the whole feature-map is available for the algorithm.
For upper bounds with online planning, the most natural assumption is that the planner
gets from the simulator the feature vector of the states that it encounters. In particular,
when it comes to online planning, the natural assumption is that the planner gets the
feature vector of the initial state together with the state and with any subsequent calls to
the simulator, the simulator returns the feature vector of the next states, together with
the next states.

In what follows we will study planning under a number of
di�erent hints (or assumptions) that connect the MDP and
a feature-map. The simplest of this just states that
holds:

Assumption A1 (-realizibility): The MDP and the
featuremap are such that

A second variation is when all value functions are realizable:

Assumption A2 (universal value function realizibility) The MDP and the featuremap
are such that for any memoryless policy of the MDP, .

Clearly, A2 implies A1, because by the fundamental theorem of MDPs, there exists a
memoryless policy such that . The �gure on the right illustrates the set of all
�nite MDPs with some state space and within those the set of those MDPs that satisfy A1
with a speci�c feature map (denoted by A1 on the �gure), as well as those MDPs that

F

Fϕ FΦ

ϕ1, … ,ϕd ϕ Φ

Delivering the hint

Typical hints

(1)

v∗ M

ϕ v∗ ∈ Fϕ

M ϕ

π vπ ∈ Fϕ

π vπ = v∗

ϕ ϕ

1/8/23, 9:45 PM Function Approximation | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec7/ 4/8

satisfy A2 with the same feature map (denoted by A2). Both of these sets represent a very
small fraction of all MDPs. However, of one changes the feature map, the union of all
these sets clearly covers the set of all MDPs: The hint is general.

There are many variations of these assumptions. Often, we will �nd it useful to relax the
assumption value functions are exactly realizable. Under the modi�ed assumptions the
value function does not need to lie in the span of the feature-map, but only in some
vicinity of it. The natural error metric to be used is the maximum norm for reasons that
will become clear later. To help with stating these assumptions in a compact form,
introduce the notation

to denote that

That is, means that the best approximator to from approximates it within a
uniform error of .

Fixing and replacing with in the above two assumptions gives the following:

Assumption A1 (approximate realizability): The MDP and the featuremap are
such that

Assumption A2 (approximate universal value function realizibility) The MDP and
the featuremap are such that for any memoryless policy of the MDP, .

We obtain new variants if we consider feature-maps that map state-action pairs to
vectors. Concretely, (by abusing notation) let . Then, the analog of A1 is as
follows:

Assumption B1 (-realizibility): The MDP and the featuremap are such that

Here, as expected, is de�ned as the set of functions that lie in the span of the feature-
map. The analog of A2 is as follows:

Assumption B2 (universal value function realizibility) The MDP and the featuremap
are such that for any memoryless policy of the MDP, .

We can also introduce positive approximation errors , which lead to B1 and B2 :

ϕ

v ∈ε F

inf
f∈F

∥f − v∥∞ ≤ ϵ .

v ∈ε F v F

ε

ε ≥ 0 ∈ ∈ε

ε v∗ M ϕ

v∗ ∈ε Fϕ

ε M

ϕ π vπ ∈ε Fϕ

Action-value hints

ϕ : S × A → R
d

q∗ M ϕ q∗ ∈ Fϕ

Fϕ

M ϕ

π qπ ∈ Fϕ

ε > 0 ε ε

1/8/23, 9:45 PM Function Approximation | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec7/ 5/8

Assumption B1 (approximate -realizibility): The MDP and the featuremap are
such that

Assumption B2 (approximate universal value function realizibility) The MDP and
the featuremap are such that for any memoryless policy of the MDP, .

One may wonder why not choose one of these assumptions? When one assumption
implies another, then clearly there is a preference to choose the weaker assumption. But
often, there is going to be a price and sometimes the assumptions are just not
comparable.

The idea of using value function approximation in planning dates back to at least the
1960s if not earlier. I include some intriguing early references at the end. That these ideas
already appeared at the down of computing where computers hardly even existed is quite
intriguing.

Function approximation is especially appealing when the state space, or the action space,
or both are “continuous” (i.e., they are a subset of a Euclidean space). In this case, the
compression is “in�nite”. Experimental evidence suggests that function approximation
can work quite well in the context of MDP planning in a surprisingly large number of
di�erent scenarios. When the spaces are in�nite, all the “math” will still go through,
except that occasionally one has to be a bit more careful. For example, one cannot clearly
say that is a matrix, but can clearly be de�ned as a linear operator mapping to the
vector space of all real-valued functions over the (say) state space (when the feature map
is also over states).

It will be instructive to start with a special case. Low-rank MDPs are those where the
transition kernel factorizes: For any state-action-state triple,

for some and . If in addition to the above,

ε q∗ M ϕ

q∗ ∈ε Fϕ

ε M

ϕ π qπ ∈ε Fϕ

Notes

Origin

In�nite spaces

Φ Φ R
d

Where do the features come from?

s, a, s′

P(s′|s, a) = ⟨ϕ(s, a), ν(s′)⟩

ϕ : S × A → R
d ν(s′) ∈ R

d

′

1/8/23, 9:45 PM Function Approximation | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec7/ 6/8

also holds for some , it is not hard to see that any action-value function lies in the
space of the features .

But what are the cases when the transition kernel factorizes? (If the transition kernel
factorizes with some feature map , one can always arrange for to hold by adding an
extra dimension to the feature map, �lled with the values of the rewards.) A simple case is
when state-action pairs can be clustered into non-overlapping groups such that for any
two pairs that belong to the same group, the transitions are identical:

. Assuming groups number from to , can be chosen as the
indicator that belongs to the th group ().

Another interesting case which leads to a factored transition kernel is when the state-
space is with some and the dynamics takes the form

with some function , and is a sequence of independent random variables with
common density . Then, the transition kernel takes the form .
The important point here is that the noise introduced is homoscedastic (does not change
with). Take, for example, the case when , i.e., are standard

normal random variables. It is well known then that

where

and for , ,

From this, we get

It follows that if we de�ne via

then

r(s, a) = ⟨ϕ(s, a), ν ′⟩ (2)

ν ′ ∈ R
d

ϕ

ϕ0 (2)

(s1, a1), (s2, a2)

P(⋅|s1, a1) = P(⋅|s2, a2) d 1 d ϕi(s, a)

(s, a) i i ∈ [d]

R
p p > 0

St+1 = f(St,At) + ηt+1

f (ηt)t

g P(ds′|s, a) = g(s′ − f(s, a))ds′

(s, a) g(x) = 1
√2π

exp(−x2/2) (ηt)t

g(x − y) = ⟨u(x; ⋅, ⋅),u(y; ⋅, ⋅)⟩ ,

u(x;ω, b) = √2 cos(ω⊤x + b)

n,m : D → R D := R
p × [0, 2π]

⟨n,m⟩ = ∫
Rp

1

2π
∫

2π

0
n(ω, b)m(ω, b) db

p

∏
i=1

g(ωi) dω .

P(ds′|s, a) = g(s′ − f(s, a))ds′ = ⟨u(s′; ⋅, ⋅),u(f(s, a); ⋅, ⋅)⟩ds′ .

ϕ : S × A → R
D

(ϕ(s, a))(ω, b) = u(f(s, a);ω, b)

P(ds′|s, a) = ⟨ϕ(s, a),u(s′; ⋅, ⋅)⟩ds′ ,

1/8/23, 9:45 PM Function Approximation | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec7/ 7/8

which is the same as above, except here is in�nite dimensional. In a way, what happens
here is that the noise introduces smoothness of the value functions. Smoothness of value
functions can arise in some other ways. In the related topic of numerical computation of
solutions of partial di�erential equations, Galerkin’s method also starts from assuming
that the solution lies in the span of some features. In the relavant literature, various
methods have been proposed to �nd appropriate features (or, basis functions, as they are
called there). The book of Quarteroni et. al. gives several methods for automating the
construction of these basis functions, and they also make a connection to optimal control.

The most successful use of the idea of compressing value functions uses neural networks.
Readers are most likely are already familiar with the ideas underlying neural networks.
The hope here is that whatever we �nd in the case of linear function approximation will
have implications in how to use nonlinear function approximation in MDP planning. In a
way, the very �rst question is whether one can decouple the design of the planning
algorithm from what function approximation technique it is used with. We will study this
question by asking for planners that work with any feature map. If we �nd that we can
identify planners that are performant no matter the feature map, the decoupling is
successful and we can hope that the ideas will generalize to nonlinear function
approximation. However, if we �nd that successful planners need to use intricate
properties of the feature maps, then this is must be taken as a warning that complications
may arise when the results are generalized to nonlinear function approximation. In any
case, it appears to be a prudent strategy to �rst investigate the simpler, more
straightforward linear case, before considering the nonlinear case.

Computation with advice is a general approach in computer science where a problem of
computing a map is changed to computing a map which has an additional input, the
advice. Clearly, the approach taken here can be seen as a special case of computation with
advice. There is also the closely related notion of non-uniform computation studied in
computability/complexity theory. In non-uniform computation, the Turing machine, in
addition to its input, also receives some “advice” string.

The classical reference is a paper of Bellman et al. from 1963, where they proposed to use
linear function approximation in a speci�c context for approximating the optimal value
functions (Bellman et al. 1963). Other early papers are by Daniel (1976) and Schweitzer

ϕ

Nonlinear value function approximation

Computation with advice/Non-uniform Computation

References

http://www.cs.toronto.edu/~wgeorge/csc422/2013/09/23/CSC422-Tutorial-2.html

1/8/23, 9:45 PM Function Approximation | RL Theory

https://rltheory.github.io/lecture-notes/planning-in-mdps/lec7/ 8/8

and Seidmann (1985). In the latter paper, the authors generalized the earlier
constructions of Bellman and others and, with modern terminology, they introduced
�tted value iteration, �tted policy iteration and approximate linear programming as
possible approaches.

The observation that homoscedastic noise makes it so that the transition kernel factorizes
is due to Ren et al. (2022). The book of Quarteroni et al. (2016) describes various methods
for automating the construction of basis functions for the solution of parametric family of
partial di�erential equations.

Richard Bellman, Robert Kalaba and Bella Kotkin. 1963. Polynomial Approximation–A
New Computational Technique in Dynamic Programming: Allocation Processes.
Mathematics of Computation, 17 (82): 155-161

Daniel, James W. 1976. “Splines and E�ciency in Dynamic Programming.” Journal of
Mathematical Analysis and Applications 54 (2): 402–7.

Schweitzer, Paul J., and Abraham Seidmann. 1985. “Generalized Polynomial
Approximations in Markovian Decision Processes.” Journal of Mathematical Analysis
and Applications 110 (2): 568–82.

Brattka, Vasco, and Arno Pauly. 2010. Computation with Advice. arXiv [cs.LO].

Quarteroni, Al�o, Andrea Manzoni, and Federico Negri. “Reduced Basis Methods for
Partial Di�erential Equations”. Springer International Publishing. 2016.

Ren, T., T. Zhang, C. Szepesvári, and B. Dai. 2022. “A Free Lunch from the Noise:
Provable and Practical Exploration for Representation Learning.” UAI. abstract

Copyright © 2020 RL Theory.

•

•

•

•

•

•

http://arxiv.org/abs/1006.0395
https://proceedings.mlr.press/v180/ren22a.html

